Probabilistic Graphical Models】的更多相关文章

http://innopac.lib.tsinghua.edu.cn/search~S1*chx?/YProbabilistic+Graphical+Models&searchscope=1&SORT=DZ/YProbabilistic+Graphical+Models&searchscope=1&SORT=DZ&SUBKEY=Probabilistic+Graphical+Models/1,143,143,B/frameset&FF=YProbabilis…
本篇博客是Daphne Koller课程Probabilistic Graphical Models(PGM)的学习笔记. 概率图模型是一类用图形模式表达基于概率相关关系的模型的总称.概率图模型共分为三个部分,分别为表示理论,推理理论和学习理论.基本的概率图模型包括贝叶斯网络.马尔科夫网络和隐马尔科夫网络. Student Example 一个学生,拥有成绩.课程难度.智力.SAT的分.推荐信等变量. 通过一张图可以把这些变量的关系表示出来,可以想象成绩由课程难度和智力决定,SAT成绩由智力决定…
目录 Probabilistic Graphical Models Statistical and Algorithmic Foundations of Deep Learning 01 An overview of DL components Historical remarks: early days of neural networks Reverse-mode automatic differentiation (aka backpropagation) Modern building…
Software for drawing bayesian networks (graphical models) 这里需要调用 latex 中的绘图库:TikZ and PGF. 注意,下述 tex 代码使用 pdflatex (不是 pdflex)进行编译. \documentclass[11pt]{report} \usepackage{tikz} \usetikzlibrary{fit,positioning} \begin{document} \begin{figure} \cente…
一.PGM用来做什么 1.  医学诊断:从各种病症分析病人得了什么病,该用什么手段治疗 2.  图像分割:从一张百万像素级的图片中分析每个像素点对应的是什么东西 两个共同点:(1)有非常多不同的输入变量:(2)对于算法而言,结果都是不确定的 二.PGM各代表什么 1.  Models 2.  Probabilistic (1)概率:设计model即是为了分析一些不确定的东西(uncertainty) (2)Uncertainty的来源: (3)概率在模型表达上的优势 3.  Graphical…
一.How to construct the dependency? 1.首字母即随机变量名称 2.I->G是更加复杂的模型,但Bayes里不考虑,因为Bayes只是无环图. 3.CPD = conditional probability distribution.图中的每一个点都是一个CPD,这里5个点,就有五个CPD. 二.Chain Rule for Bayesian Neatworks 将整个Bayes网络的所有节点所构成的联合概率(Joint probability)利用链式法则(ch…
一.什么是factors? 类似于function,将一个自变量空间投影到新空间.这个自变量空间叫做scope. 二.例子 如概率论中的联合分布,就是将不同变量值的组合映射到一个概率,概率和为1. 三.几种操作(factor operation)的介绍 1.乘积 2.边缘化 3.缩减 四.总结(为何引入factor?) 1.对于定义高维空间的分布具有关键意义: 2.包括了概率分布的基本操作.…
独立(Independence) 统计独立(Statistical Independence) 两个随机变量X,Y统计独立的条件是当且仅当其联合概率分布等于边际概率分布之积: \[ X \perp Y \leftrightarrow P(X,Y)=P(Y) P(Y) \] 思考:假设 \(X \perp Y\),\(Y \perp Z\),那么 \(X\) 和 \(Y\) 有没有独立关系呢? 举例:爸吃饭,奥巴马吃饭,妈吃饭 条件独立(Conditional Independence) 两个随机…
此文为David M. Blei所写的<Introduction to Probabilistic Topic Models>的译文,供大家参考. 摘要:概率主题模型是一系列旨在发现隐藏在大规模文档中的主题结构的算法.本文首先回顾了这一领域的主要思想,接着调研了当前的研究水平,最后展望某些有所希望的方向.从最简单的主题模型——潜在狄立克雷分配(Latent Dirichlet Allocation,LDA)出发,讨论了其与概率建模的联系,描述了用于主题发现的两种算法.主题模型日新月异,被扩展和…
概率主题模型简介 Introduction to Probabilistic Topic Models      转:http://www.cnblogs.com/siegfang/archive/2013/01/30/2882391.html   此文为David M. Blei所写的<Introduction to Probabilistic Topic Models>的译文,供大家参考. 摘要:概率主题模型是一系列旨在发现隐藏在大规模文档中的主题结构的算法.本文首先回顾了这一领域的主要思…