pytorch入门1——简单的网络搭建】的更多相关文章

代码如下: %matplotlib inline import torch import torch.nn as nn import torch.nn.functional as F from torchsummary import summary from torchvision import models class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1…
文章目录: 目录 1 任务 2 实现思路 3 实现过程 3.1 引入必要库 3.2 创建训练集 3.3 搭建网络 3.4 设置优化器 3.5 训练网络 3.6 测试 1 任务 首先说下我们要搭建的网络要完成的学习任务: 让我们的神经网络学会逻辑异或运算,异或运算也就是俗称的"相同取0,不同取1" .再把我们的需求说的简单一点,也就是我们需要搭建这样一个神经网络,让我们在输入(1,1)时输出0,输入(1,0)时输出1(相同取0,不同取1),以此类推. 2 实现思路 因为我们的需求需要有两…
我们按照超简单!pytorch入门教程(四):准备图片数据集准备好了图片数据以后,就来训练一下识别这10类图片的cnn神经网络吧. 按照超简单!pytorch入门教程(三):构造一个小型CNN构建好一个神经网络,唯一不同的地方就是我们这次训练的是彩色图片,所以第一层卷积层的输入应为3个channel.修改完毕如下: 我们准备了训练集和测试集,并构造了一个CNN.与之前LeNet不同在于conv1的第一个参数1改成了3 现在咱们开始训练 我们训练这个网络必须经过4步: 第一步:将输入input向前…
​ 前言 本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍. 本文来自公众号CV技术指南的技术总结系列 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. 在讲如何搭建之前,先回顾一下Transformer在计算机视觉中的结构是怎样的.这里以最典型的ViT为例. ​ 如图所示,对于一张图像,先将其分割成NxN个…
简介 本实验是基于pox搭建简单的网络并测试网络的连通性,利用mininet代码创建一个交换机四个主机的拓扑,测试各主机之间的连通性以及h1.h4之间的带宽. 代码 实验代码如下所示,SingleSwitchTopo类负责创建拓扑,n个主机连接一个交换机,每个主机的CPU占50%/n,链路性能参数分别是“bw=10.delay='5ms'.loss=0.max_queue_size=1000”. perfTest函数实现了主要功能,首先创建4个主机1个交换机的拓扑,启动控制器.交换机后用ping…
首发于:用http.get()简单实现网络验证防止客户不给尾款_电脑计算机编程入门教程自学 http://jianma123.com/viewthread.aardio?threadid=428 给软件加上网络验证是经常需要用到的实用功能,下面简单示范下怎么用http.get()简单实现网络验证,用来防止客户不给尾款等. 适用场景 1.集团公司给大量员工用的内部软件,防止外传 2.给客户定制的软件在试用版中加上网络验证,防止不给尾款 工作过程 先让用户申请帐号,管理员在后台审核添加帐号,每次登陆…
Redis入门很简单之一[简介与环境搭建] 博客分类: NoSQL/Redis/MongoDB redisnosqlmemcached缓存中间件  [Redis简介] <一>. NoSQL简介:    NoSQL是Not-Only-SQL的缩写,是被设计用来替换传统的关系型数据库在某些领域的用,特别针对web2.0站点以及大型的SNS网站,用来满足高并发.大数据的应用需求.常见的NoSQL数据库系统有HBase(Hadoop数据库,基于列存储).MongoDB(文档型数据库,采用类型与JSON…
本节内容参照小土堆的pytorch入门视频教程,主要通过查询文档的方式讲解如何搭建卷积神经网络.学习时要学会查询文档,这样会比直接搜索良莠不齐的博客更快.更可靠.讲解的内容主要是pytorch核心包中TORCH.NN中的内容(nn是Neural Netwark的缩写). 通常,我们定义的神经网络模型会继承torch.nn.Module类,该类为我们定义好了神经网络骨架. 卷积层 对于图像处理来说,我们通常使用二维卷积,即使用torch.nn.Conv2d类: 创建该类时,我们通常只需要传入以下几…
Pytorch入门随手记 什么是Pytorch? Pytorch是Torch到Python上的移植(Torch原本是用Lua语言编写的) 是一个动态的过程,数据和图是一起建立的. tensor.dot(tensor1,tensor2)//tensor各个对应位置相乘再相加 print(net)可以输出网络结构 Pytorch的动态性:网络参数可以有多个不固定的,例如: 来源:https://morvanzhou.github.io/tutorials/machine-learning/torch…
本节内容参照小土堆的pytorch入门视频教程. 现有模型使用和修改 pytorch框架提供了很多现有模型,其中torchvision.models包中有很多关于视觉(图像)领域的模型,如下图: 下面以VGG16为例将讲解如何使用以及更改现有模型: pretrained为True,返回在ImageNet上预训练过的模型:pregress为True在下载模型时会通过标准错误流输出进度条. 创建如下脚本并运行: from torchvision import models # 创建预训练过的模型,并…