一直在关注可解释机器学习领域,因为确实在工作中有许多应用 模型检查,特征重要性是否符合预期和AUC一样重要 模型解释,比起虚无缥缈的模型指标,解释模型学到的规律更能说服业务方 样本解释,为什么这些用户会违约,是否有指标能提前预警? 决策归因,有时模型只是提取pattern的方式,最终需要给到归因/决策,例如HTE模型和XAI结合是否也是一种落地方式 18年被H2O Driverless AI 提供的可解释机器学习引擎(下图)种草后,就对这个领域产生了兴趣.不过用的越多,XAI暴露的问题就越多,比…