实际项目我是这样做的: def mining_ue_procedures_behavior(seq, lengths, imsi_list): print("seq 3:", seq[:3], "lengths 3:", lengths[:3]) # model.fit(seq, lengths) fitter = LabelEncoder().fit(seq) import sys n_components=[5, 10, 20, 30][int(sys.argv…
选自:http://maotong.blog.hexun.com/6261873_d.html 苏统华 哈尔滨工业大学人工智能研究室 2006年10月30日 声明:版权所有,转载请注明作者和来源 该系统能够识别连续说出的数字串和若干组姓名.建模是针对子词(sub-word, eg. 音素),具有一定的可扩充性.当加入一个新名字时,只需修改发音词典和任务语法即可.模型为连续混合高斯输出,运用语音决策树聚类形成的绑定状态式三音素. 3. 创建绑定状态的三音素HMM模型 目的是加入上下文依赖(cont…
通过前几时断续的学习,发现自己对HMM模型的了解还只停留在皮毛,导致在学习CRF模型并将其与最大熵模型.HMM.MEMM做比较时感觉很吃力,所以又花了两天时间使劲看了遍HMM,发现了解得确实深刻了很多,现小结一下,争取把看过的知识变成自己的,特别感谢52nlp网站http://www.52nlp.cn/和崔晓源翻译的HMM相关资料,英文学习网站http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html,中文神马的…
隐马尔科夫模型HMM(一)HMM模型基础 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 隐马尔科夫模型(Hidden Markov Model,以下简称HMM)是比较经典的机器学习模型了,它在语言识别,自然语言处理,模式识别等领域得到广泛的应用.当然,随着目前深度学习的崛起,尤其是RNN,LSTM等神经网络序列模型的火热,HMM的地位有所下降.但是作为…
关于HMM模型:时序分析:隐马尔科夫模型 HMM用于手势识别: 训练时每一种手势对应一个HMM-Model,识别率取最大的一个HMM即可.  类似于一个封装的完成多类识别器功能单层网络. 优点: 尤其适用于时间序列的建模,对复杂度高的动作也具有较高的识别精度,易于添加和修改手势库. 缺点:训练的难度大(需要多的样本来完成图的优化). 以下引自于一篇论文:基于马尔可夫模型的手势识别算法.修改为了与我自己的项目相关的东西. 引言: 基于隐马尔可夫模型的动态手势识别一般是应用手势的时间特性进行识别.单…
之前我们学习使用TensorFlow对图像数据进行预处理的方法.虽然使用这些图像数据预处理的方法可以减少无关因素对图像识别模型效果的影响,但这些复杂的预处理过程也会减慢整个训练过程.为了避免图像预处理成为神经网络模型训练效率的瓶颈,TensorFlow提供了一套多线程处理输入数据的框架. 下面总结了一个经典的输入数据处理的流程: 下面我们首先学习TensorFlow中队列的概念.在TensorFlow中,队列不仅是一种数据结构,它更提供了多线程机制.队列也是TensorFlow多线程输入数据处理…
选自:http://maotong.blog.hexun.com/6204849_d.html 苏统华 哈尔滨工业大学人工智能研究室 2006年10月30日 声明:版权所有,转载请注明作者和来源 该系统能够识别连续说出的数字串和若干组姓名.建模是针对子词(sub-word, eg. 音素),具有一定的可扩充性.当加入一个新名字时,只需修改发音词典和任务语法即可.模型为连续混合高斯输出,运用语音决策树聚类形成的绑定状态式三音素. 2. 创建单音素HMM模型 涉及创建一系列单高斯单音素HMM的过程.…
HMM算法想必大家已经听说了好多次了,完全看公式一头雾水.但是HMM的基本理论其实很简单.因为HMM是马尔科夫链中的一种,只是它的状态不能直接被观察到,但是可以通过观察向量间接的反映出来,即每一个观察向量由一个具有相应概率密度分布的状态序列产生,又由于每一个状态也是随机分布的,所以HMM是一个双重随机过程. HMM是语音识别,人体行为识别,文字识别等领域应用非常广泛. 一个HMM模型可以用5个元素来描述,包过2个状态集合和3个概率矩阵.其分别为 隐含状态S,可观测状态O,初始状态概率矩阵π,隐含…
上一篇讨论了HMM的基本概念和一些性质,HMM在现实中还是比较常见的,因此也带来一了一系列的HMM应用问题.HMM应用主要面向三个方面:预测.解码和学习.这篇主要讨论预测. 简单来说,预测就是给定HMM,和一个观察得到的可观察状态序列,求出通过HMM得到这个序列的概率是多少,这也是一般机器学习等领域中比较常见的应用,得到一个模型后我们当然是希望通过这个模型来得到一些预测的结果.这个也是HMM应用比较基本比较简单的一个. 首先对于给定的HMM和观察序列,第一反应当然是穷举搜索,不妨假设模型为λ,…
一直想写点关于数学方面的blog,这对于数据挖掘分析,NLP处理等都有着比较重要的作用,之前在CSDN上想写点HMM方面的文章,一直没写成,最近几天终于抽点时间完成了HMM的文章,加以整理,遂有这个系列文章 首先是对HMM模型的介绍. 传统的马尔可夫模型(Markov Model)主要描述了具有马尔可夫性质的一个随机过程.更特殊的来讲,是离散的马尔可夫过程——马尔可夫链(Markov Chain).马尔可夫性质是指在给定当前和之前已发生事件后,未来发生事件仅依赖当前事件.马尔可夫过程主要具有两个…