统计学习方法c++实现之二 k近邻算法 前言 k近邻算法可以说概念上很简单,即:"给定一个训练数据集,对新的输入实例,在训练数据集中找到与这个实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入分为这个类."其中我认为距离度量最关键,但是距离度量的方法也很简单,最长用的就是欧氏距离,其他的距离度量准则实际上就是不同的向量范数,这部分我就不赘述了,毕竟这系列博客的重点是实现.代码地址:https://github.com/bBobxx/statistical-learning k…
全文引用自<统计学习方法>(李航) K近邻算法(k-nearest neighbor, KNN) 是一种非常简单直观的基本分类和回归方法,于1968年由Cover和Hart提出.在本文中,主要介绍了分类方法.其输入为特征空间中的点,输出为给定实例的类别,可以选择多个类输出.K近邻算法通过给定的训练集对特征空间进行分类,分类时,对于输入的实例,通过判断其最近的k个实例的类别,选择多数类别为本实例的最终分类.因此,k近邻算法本质上并不具有显示的学习过程. 本篇文章通过介绍K近邻算法的k值选择.距离…
统计学习方法与Python实现(二)——k近邻法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 k近邻法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决的方式进行预测.k近邻法不具有显式的学习过程,而实际上是利用训练数据集对特征空间进行划分,并作为其分类的模型.k近邻法的三个基本要素是 k值的选择.距离度量和分类决策规则. k近邻法的模型是将特征空间划分成一些称为单元的子空间,并且…
本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个基本要素. k近邻算法 给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类. k近邻法没有显示的学习过程. k近邻模型 距离度量 一般为欧式距离,Lp距离.Minkowski距离等 由不同的距离度量所确定的最近邻点是不同的. 式…
k 近邻法(k-nearest neighbor,k-NN) 是一种基本分类与回归方法.本书只讨论分类问题中的k近邻法.k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类.k近邻法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测.因此,k近邻法不具有显式的学习过程.k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”.k值的选择.距离度量及分类决策规则是k近邻法的三个基…
统计学习方法与Python实现(一)——感知机 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 假设输入的实例的特征空间为x属于Rn的n维特征向量,输出空间为y = { +1, -1}的两点,输出的y的值表示实例的类别,则由输出空间到输出空间的函数: 被称为感知机. 模型参数w表示内积的权值向量,b表示偏置.sign(x)为符号函数,≥0取+1,<0取-1. 感知机模型的分类由线性方程 wx + b = 0 确定的分离超平面来完成,根据将特征向…
统计学习方法与Python实现(三)——朴素贝叶斯法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布.然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y,从而进行决策分类. 朴素贝叶斯法学习到的是生成数据的机制,属于生成模型. 设Ω为试验E的样本空间,A为E的事件,B1~Bn为Ω的一个划分,则…
上一篇文章讲了k近邻法,以及使用kd树构造数据结构,使得提高最近邻点搜索效率,但是这在数据点N 远大于 2^n 时可以有效的降低算法复杂度,n为数据点的维度,否则,由于需要向上回溯比较距离,使得实际效率总是很低(接近线性扫描).比如SIFT特征矢量128维,SURF特征矢量64维,维度都比较大,N 远大于 2^n 可能无法满足.此外,由于每个最近邻点都需要回溯到根节点才算结束,那么,在获取k个近邻点时,必然存在大量不必要的回溯点,这些都需要另寻其他查询方法. 一个简单的改进思路就是将“查询路径”…
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了.这里就运用了KNN的思想.KNN方法既可以做分类,也可以做回归,这点和决策树算法相同. KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同.KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别.而KNN做回归时,一般是选择平均…
对新的输入实例,在训练数据集中找到与该实例最邻近的\(k\)个实例,这\(k\)个实例的多数属于某个类,就把该输入实例分给这个类. \(k\) 近邻法(\(k\)-nearest neighbor, \(k\)-NN)是一种基本分类与回归方法,这里只讨论分类问题中的\(k\)-NN. 三要素: \(k\)值的选择 距离度量 分类决策规则 \(k\)近邻算法 输入:训练数据集\(T = \{ (x_1,y_1), (x_2,y_2), \cdot \cdot \cdot , (x_N,y_N) \…