7.4.1 Intel CPU物理结构 https://www.cnblogs.com/megachen/p/9768115.html x86实模式 实模式 20位:1M内存空间 地址表示方式:段地址(16位):偏移地址(16位) 段地址4位对齐 保护模式(Protect Mode) 32位地址空间:4G内存 支持多任务.任务切换.上下文保护 进程隔离:代码和数据的安全 支持分段机制和分页机制 新的寄存器 EAX~EDX:扩充到32位 CR0~CR4 GDTR LDTR IDTR -- 保护模式…
一.Linux 进程在内存中的数据结构 一个可执行程序在存储(没有调入内存)时分为代码段,数据段,未初始化数据段三部分:    1) 代码段:存放CPU执行的机器指令.通常代码区是共享的,即其它执行程序可调用它.假如机器中有数个进程运行相同的一个程序,那么它们就可以使用同一个代码段.     2) 数据段:存放已初始化的全局变量.静态变量(包括全局和局部的).常量.static全局变量和static函数只能在当前文件中被调用.     3) 未初始化数据区(uninitializeddata s…
Linux内存管理之二:Linux在X86上的虚拟内存管理 本文档来自网络,并稍有改动. 前言 Linux支持很多硬件运行平台,常用的有:Intel X86,Alpha,Sparc等.对于不能够通用的一些功能,Linux必须依据硬件平台的特点来具体实现.本文的目的是简要探讨Linux在X86保护模式上如何实现虚拟内存管理功能.为简化和方便叙述,本文做如下限定:X86处理器为80486和其后的处理器,X86工作在保护模式,不采用物理内存扩展(使用32bits物理地址),不使用扩展页(页大小为4K)…
Linux内存管理之一:基本概念篇 物理地址.线性地址(虚拟地址)和逻辑地址:阐述段式管理和页式管理基本概念:Linux操作系统内存管理和虚拟内存概念:为内核开发做一个基础铺垫. 内存是linux内核所管理的最重要的资源之一,内存管理子系统是操作系统中最重要的部分之一.对与立志从事内核开发的工程师来说,熟悉linux的内存管理系统非常重要. 1.物理地址.线性地址(虚拟地址)和逻辑地址之间的关系 物理地址是指出现在cpu外部的地址总线上的寻址物理内存的地址信号,是地址变换的最终结果. 逻辑地址是…
Linux分页机制之概述--Linux内存管理(六) 2016年09月01日 19:46:08 JeanCheng 阅读数:5491 标签: linuxkernel内存管理分页架构更多 个人分类: ┈┈[理解Linux内存管理] https://blog.csdn.net/gatieme/article/details/52402861 全系列 非常好 就是自己学习不会..      版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gati…
linux内存管理---虚拟地址.逻辑地址.线性地址.物理地址的区别(一) 这篇文章中介绍了四个名词的概念,下面针对四个地址的转换进行分析 CPU将一个虚拟内存空间中的地址转换为物理地址,需要进行两步(如下图): 首先,将给定一个逻辑地址(其实是段内偏移量,这个一定要理解!!!),CPU要利用其段式内存管理单元,先将为个逻辑地址转换成一个线程地址, 其次,再利用其页式内存管理单元,转换为最终物理地址. 这样做两次转换,的确是非常麻烦而且没有必要的,因为直接可以把线性地址抽像给进程.之所以这样冗余…
分析linux内存管理机制,离不了上述几个概念,在介绍上述几个概念之前,先从<深入理解linux内核>这本书中摘抄几段关于上述名词的解释: 一.<深入理解linux内核>的解释 逻辑地址(Logical Address) 包含在机器语言指令中用来指定一个操作数或一条指令的地址(有点深奥).这种寻址方式在80x86著名的分段结构中表现得尤为具体,它促使windows程序员把程序分成若干段.每个逻辑地址都由一个段和偏移量组成,偏移量指明了从段开始的地方到实际地址之间的距离. 线性地址(…
Linux内存管理原理 在用户态,内核态逻辑地址专指下文说的线性偏移前的地址Linux内核虚拟3.伙伴算法和slab分配器 16个页面RAM因为最大连续内存大小为16个页面 页面最多16个页面,所以16/2order(0)bimap有8个bit位两个页框page1 与page2组成与两个页框page3 与page4组成,这两个块之间有一个bit位 order(1)bimap有4个bit位order(2)bimap有4个bit位的2个页面分配过程 当我们需要order(1)的空闲页面块时,orde…
linux内存管理原理深入理解段式页式 https://blog.csdn.net/h674174380/article/details/75453750 其实一直没弄明白 linux 到底是 段页式 还是仅是段式内存管理 2017-07-20 08:52:39 楼下丶小黑 阅读数 6275   前一段时间看了<深入理解Linux内核>对其中的内存管理部分花了不少时间,但是还是有很多问题不是很清楚,最近又花了一些时间复习了一下,在这里记录下自己的理解和对Linux中内存管理的一些看法和认识.…
1.概念 内存管理模式 段式:内存分为了多段,每段都是连续的内存,不同的段对应不用的用途.每个段的大小都不是统一的,会导致内存碎片和内存交换效率低的问题. 页式:内存划分为多个内存页进行管理,如在 Linux 系统中,每一页的大小为 4KB.由于分了页后,就不会产生细小的内存碎片.但是仍然也存在内存碎片问题. 段页式:段式和页式结合. 地址类型划分 逻辑地址:程序所使用的地址,通常是没被段式内存管理映射的地址,称为逻辑地址 线性地址:通过段式内存管理映射的地址,称为线性地址,也叫虚拟地址 虚拟地…
本文以32位机器为准,串讲一些内存管理的知识点. 1. 虚拟地址.物理地址.逻辑地址.线性地址 虚拟地址又叫线性地址.linux没有采用分段机制,所以逻辑地址和虚拟地址(线性地址)(在用户态,内核态逻辑地址专指下文说的线性偏移前的地址)是一个概念.物理地址自不必提.内核的虚拟地址和物理地址,大部分只差一个线性偏移量.用户空间的虚拟地址和物理地址则采用了多级页表进行映射,但仍称之为线性地址. 2. DMA/HIGH_MEM/NROMAL 分区 在x86结构中,Linux内核虚拟地址空间划分0~3G…
转自:http://www.cnblogs.com/zhaoyl/p/3695517.html 本文以32位机器为准,串讲一些内存管理的知识点. 1. 虚拟地址.物理地址.逻辑地址.线性地址 虚拟地址又叫线性地址.linux没有采用分段机制,所以逻辑地址和虚拟地址(线性地址)(在用户态,内核态逻辑地址专指下文说的线性偏移前的地址)是一个概念.物理地址自不必提.内核的虚拟地址和物理地址,大部分只差一个线性偏移量.用户空间的虚拟地址和物理地址则采用了多级页表进行映射,但仍称之为线性地址. 2. DM…
windows内存管理 windows 内存管理方式主要分为:页式管理,段式管理,段页式管理. 页式管理的基本原理是将各进程的虚拟空间划分为若干个长度相等的页:页式管理把内存空间按照页的大小划分成片或者页面,然后把页式虚拟地址与内存地址建立一一对应的页表:并用相应的硬件地址变换机构来解决离散地址变换问题.页式管理采用请求调页或预调页技术来实现内外存存储器的统一管理.其优点是没有外碎片,每个内碎片不超过页的大小.缺点是,程序全部装入内存,要求有相应的硬件支持.例如地址变换机构缺页中断的产生和选择淘…
内核的 shmall 和 shmmax 参数 SHMMAX= 配置了最大的内存segment的大小 ------>这个设置的比SGA_MAX_SIZE大比较好. SHMMIN= 最小的内存segment的大小 SHMMNI= 整个系统的内存segment的总个数 SHMSEG= 每个进程可以使用的内存segment的最大个数 配置信号灯( semphore )的参数: SEMMSL= 每个semphore set里面的semphore数量 -----> 这个设置大于你的process的个数吧,…
slab分配器是什么? 参考:http://blog.csdn.net/vanbreaker/article/details/7664296 slab分配器是Linux内存管理中非常重要和复杂的一部分,其工作是针对一些经常分配并释放的对象,如进程描述符等,这些对象的大小一般比较小,如果直接采用伙伴系统来进行分配和释放,不仅会造成大量的内碎片,而且处理速度也太慢.而slab分配器是基于对象进行管理的,相同类型的对象归为一类(如进程描述符就是一类),每当要申请这样一个对象,slab分配器就从一个sl…
专题:Linux内存管理专题 关键词:slab/slub/slob.slab描述符.kmalloc.本地/共享对象缓冲池.slabs_partial/slabs_full/slabs_free.avail/limit/batchcount. 从Linux内存管理框架图可以知道:slab/slub/slob都是基于伙伴系统. 伙伴系统是以page为单位进行操作的.但是很多场景并不需要如此大的内存分配,slab就是用在这种场景的. 本章节主要内容:从slab相关数据结构讲起,对slab有一个静态的认…
1 前景提要 1.1 碎片化问题 分页与分段 页是信息的物理单位, 分页是为了实现非连续分配, 以便解决内存碎片问题, 或者说分页是由于系统管理的需要. 段是信息的逻辑单位,它含有一组意义相对完整的信息, 分段的目的是为了更好地实现共享, 满足用户的需要. 页的大小固定且由系统确定, 将逻辑地址划分为页号和页内地址是由机器硬件实现的. 而段的长度却不固定, 决定于用户所编写的程序, 通常由编译程序在对源程序进行编译时根据信息的性质来划分. 分页的作业地址空间是一维的. 分段的地址空间是二维的.…
在内核初始化完成之后, 内存管理的责任就由伙伴系统来承担. 伙伴系统基于一种相对简单然而令人吃惊的强大算法. Linux内核使用二进制伙伴算法来管理和分配物理内存页面, 该算法由Knowlton设计, 后来Knuth又进行了更深刻的描述. 伙伴系统是一个结合了2的方幂个分配器和空闲缓冲区合并计技术的内存分配方案, 其基本思想很简单. 内存被分成含有很多页面的大块, 每一块都是2个页面大小的方幂. 如果找不到想要的块, 一个大块会被分成两部分, 这两部分彼此就成为伙伴. 其中一半被用来分配, 而另…
1. 启动过程中的内存初始化 首先我们来看看start_kernel是如何初始化系统的, start_kerne定义在init/main.c?v=4.7, line 479 其代码很复杂, 我们只截取出其中与内存管理初始化相关的部分, 如下所示 table th:nth-of-type(1){ width: 30%; } asmlinkage __visible void __init start_kernel(void) { setup_arch(&command_line); mm_init…
在内存管理的上下文中, 初始化(initialization)可以有多种含义. 在许多CPU上, 必须显式设置适用于Linux内核的内存模型. 例如在x86_32上需要切换到保护模式, 然后内核才能检测到可用内存和寄存器. 而我们今天要讲的boot阶段就是系统初始化阶段使用的内存分配器. 1 前景回顾 1.1 Linux内存管理的层次结构 Linux把物理内存划分为三个层次来管理 层次 描述 存储节点(Node) CPU被划分为多个节点(node), 内存则被分簇, 每个CPU对应一个本地物理内…
1. General 1.1 /proc/meminfo /proc/meminfo是了解Linux系统内存使用状况主要接口,也是free等命令的数据来源. 下面是cat /proc/meminfo的一个实例. MemTotal: 8054880 kB---------------------对应totalram_pages大小 MemFree: kB---------------------对应vm_stat[NR_FREE_PAGES]大小 MemAvailable: kB---------…
专题:Linux内存管理专题 关键词:用户内核空间划分.Node/Zone/Page.memblock.PGD/PUD/PMD/PTE.lowmem/highmem.ZONE_DMA/ZONE_NORMAL/ZONE_HIGHMEM.Watermark.MIGRATE_TYPES. 物理内存初始化是随着Linux内核初始化进行的,同时内存管理也是其他很多其他功能的基础.和内核中各种模块耦合在一起. 在进行初始化之前,了解Linux内存管理框架图有助于对内存管理有个大概的映像. 首先,需要知道整个…
专题:Linux内存管理专题 关键词:内核内存布局图.lowmem线性映射区.kernel image.ZONE_NORMAL.ZONE_HIGHMEM.swapper_pg_dir.fixmap.vector.pkmap. 内核内存布局图对于理解内存管理至关重要,有了布局图对于理解内存管理初始化,以及虚拟内存,各种内存分配都有辅助作用. 所以可以用一张图来总领,然后逐个介绍每一段的来历,作用等等. 内核内存布局图和内存管理框架图是不同视角的内存管理框图,还包括后面介绍的用户空间内存布局图. 1…
专题:Linux内存管理专题 关键词:LRU.活跃/不活跃-文件缓存/匿名页面.Refault Distance. 页面回收.或者回收页面也即page reclaim,依赖于LRU链表对页面进行分类:不活跃匿名页面.活跃匿名页面.不活跃文件缓存页面.活跃文件缓存页面和不可回收页面. 内存紧张时优先换出文件缓存页面,然后才是匿名页面.因为文件缓存页面有后备存储器,而匿名页面必须要写入交换分区. 所以回收页面的三种机制(1)对未修改的文件缓存页面可以直接丢弃,(2)对被修改的文件缓存页面需要会写到存…
专题:Linux内存管理专题 关键词:OOM.swap.HMM.LRU. 本系列没有提到的内容由THP(Transparent Huge Page).memory cgroup.slub.CMA.zram.swap.zswap.memory hotplug等. 下面列举从Linux 4.0到Linux 4.10中在内存管理方面的更新内容. 1. 页面回收策略从zone迁移到node 页面回收策略从基于zone迁移到基于node策略的一个主要原因是在同一个node中不同zone存在着不同的页面老化…
专题:Linux内存管理专题 关键词:OOM.oom_adj.oom_score.badness. Linux内核为了提高内存的使用效率采用过度分配内存(over-commit memory)的办法,造成物理内存过度紧张进而触发OOM机制来杀死一些进程回收内存. 该机制会监控那些占用内存过大,尤其是瞬间很快消耗大量内存的进程,为了防止内存耗尽会把该进程杀掉. 1. 关于OOM 内核检测到系统内存不足,在内存分配路径上触发out_of_memory,然后调用select_bad_process()…
专题:Linux内存管理专题 关键词:slub_debug.kmemleak.kasan.oob.Redzone.Padding. Linux常见的内存访问错误有: 越界访问(out of bounds) 访问已经释放的内存(use after free) 重复释放 内存泄露(memory leak) 栈溢出(stack overflow) 不同的工具有不同的侧重点,本章主要从slub_debug.kmemleak.kasan三个工具介绍. kmemleak侧重于内存泄露问题发现. slub_d…
专题:Linux内存管理专题 关键词:DataAbort.fsr.pte.backtrace.stack.   在内存相关实际应用中,内存异常访问是一种常见的问题. 本文结合异常T32栈回溯.Oops打印以及代码,分析打印log,加深对Oops的理解,有助于快速定位问题解决问题. 1. 不同类型异常处理 当内存访问异常时,触发__dabt_svc异常向量处理,进入do_DataAbort进行处理. 从_dabt_svc到do_DataAbort流程,可以参考do_DataAbort. 从do_D…
转自:https://www.cnblogs.com/arnoldlu/p/8568090.html 专题:Linux内存管理专题 关键词:slub_debug.kmemleak.kasan.oob.Redzone.Padding. Linux常见的内存访问错误有: 越界访问(out of bounds) 访问已经释放的内存(use after free) 重复释放 内存泄露(memory leak) 栈溢出(stack overflow) 不同的工具有不同的侧重点,本章主要从slub_debu…
Linux分页机制之分页机制的演变--Linux内存管理(七) 2016年09月01日 20:01:31 JeanCheng 阅读数:4543 https://blog.csdn.net/gatieme/article/details/52402967 ~   版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gatieme https://blog.csdn.net/gatieme/article/details/52402967 日期 内…