Apache Hudi异步Compaction方式汇总】的更多相关文章

本篇文章对执行异步Compaction的不同部署模型一探究竟. 1. Compaction 对于Merge-On-Read表,数据使用列式Parquet文件和行式Avro文件存储,更新被记录到增量文件,然后进行同步/异步compaction生成新版本的列式文件.Merge-On-Read表可减少数据摄入延迟,因而进行不阻塞摄入的异步Compaction很有意义. 2. 异步Compaction 异步Compaction会进行如下两个步骤 调度Compaction:由摄取作业完成,在这一步,Hud…
在我们之前的文章中,我们讨论了多模式索引的设计,这是一种用于Lakehouse架构的无服务器和高性能索引子系统,以提高查询和写入性能.在这篇博客中,我们讨论了构建如此强大的索引所需的机制,异步索引机制的设计,类似于 PostgreSQL 和 MySQL 等流行的数据库系统,它支持索引构建而不会阻塞写入. 背景 Apache Hudi 将事务和更新/删除/更改流添加到弹性云存储和开放文件格式之上的表中. Hudi 内部的一个关键组件是事务数据库内核,它协调对 Hudi 表的读取和写入.索引是该内核…
1. 摘要 在之前的一篇博客中,我们介绍了Clustering(聚簇)的表服务来重新组织数据来提供更好的查询性能,而不用降低摄取速度,并且我们已经知道如何部署同步Clustering,本篇博客中,我们将讨论近期社区做的一些改进以及如何通过HoodieClusteringJob和DeltaStreamer工具来部署异步Clustering. 2. 介绍 通常讲,Clustering根据可配置的策略创建一个计划,根据特定规则对符合条件的文件进行分组,然后执行该计划.Hudi支持并发写入,并在多个表服…
1.如何写入Hudi数据集 通常,你会从源获取部分更新/插入,然后对Hudi数据集执行写入操作.如果从其他标准来源(如Kafka或tailf DFS)中提取数据,那么DeltaStreamer将会非常有用,其提供了一种简单的自我管理解决方案,可将数据写入Hudi.你还可以自己编写代码,使用Spark数据源API从自定义源获取数据,并使用Hudi数据源写入Hudi. 2. 如何部署Hudi作业 写入Hudi的好处是它可以像在YARN/Mesos甚至是K8S群集上运行的任何其他Spark作业一样运行…
一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主要从事数据方面的工作,包括摄取标准化,数据湖原语等. 什么是数据湖?数据湖是一个集中式的存储,允许以任意规模存储结构化和非结构化数据.你可以存储原始数据,而不需要先转化为结构化的数据,基于数据湖之上可以运行多种类型的分析,如dashboard.大数据处理的可视化.实时分析.机器学习等. 接着看看对于构建PB…
Apache Hudi Apache Hudi 在基于 HDFS/S3 数据存储之上,提供了两种流原语: 插入更新 增量拉取 一般来说,我们会将大量数据存储到HDFS/S3,新数据增量写入,而旧数据鲜有改动,特别是在经过数据清洗,放入数据仓库的场景.而且在数据仓库如 hive中,对于update的支持非常有限,计算昂贵.另一方面,若是有仅对某段时间内新增数据进行分析的场景,则hive.presto.hbase等也未提供原生方式,而是需要根据时间戳进行过滤分析. 在此需求下,Hudi可以提供这两种…
感谢 Apache Hudi contributor:王祥虎 翻译&供稿. 欢迎关注微信公众号:ApacheHudi 本文将介绍Apache Hudi的基本概念.设计以及总体基础架构. 1.简介 Apache Hudi(简称:Hudi)使得您能在hadoop兼容的存储之上存储大量数据,同时它还提供两种原语,使得除了经典的批处理之外,还可以在数据湖上进行流处理.这两种原语分别是: Update/Delete记录:Hudi使用细粒度的文件/记录级别索引来支持Update/Delete记录,同时还提供…
是的,最近国内云服务提供商腾讯云在其EMR-V2.2.0版本中优先集成了Hudi 0.5.1版本作为其云上的数据湖解决方案对外提供服务 Apache Hudi 在 HDFS 的数据集上提供了插入更新和增量拉取的流原语. 一般来说,我们会将大量数据存储到 HDFS,新数据增量写入,而旧数据鲜有改动,特别是在经过数据清洗,放入数据仓库的场景.而且在数据仓库如 hive 中,对于 update 的支持非常有限,计算昂贵.另一方面,若是有仅对某段时间内新增数据进行分析的场景,则 hive.presto.…
1. 引言 从确保准确预计到达时间到预测最佳交通路线,在Uber平台上提供安全.无缝的运输和交付体验需要可靠.高性能的大规模数据存储和分析.2016年,Uber开发了增量处理框架Apache Hudi,以低延迟和高效率为关键业务数据管道赋能.一年后,我们开源了该解决方案,以使得其他有需要的组织也可以利用Hudi的优势.接着在2019年,我们履行承诺,进一步将其捐赠给了Apache Software Foundation,差不多一年半之后,Apache Hudi毕业成为Apache Softwar…
1. 引入 大多数现代数据湖都是基于某种分布式文件系统(DFS),如HDFS或基于云的存储,如AWS S3构建的.遵循的基本原则之一是文件的"一次写入多次读取"访问模型.这对于处理海量数据非常有用,如数百GB到TB的数据. 但是在构建分析数据湖时,更新数据并不罕见.根据不同场景,这些更新频率可能是每小时一次,甚至可能是每天或每周一次.另外可能还需要在最新视图.包含所有更新的历史视图甚至仅是最新增量视图上运行分析. 通常这会导致使用用于流和批处理的多个系统,前者处理增量数据,而后者处理历…