强化学习 --- 马尔科夫决策过程(MDP) 1.强化学习介绍 ​ 强化学习任务通常使用马尔可夫决策过程(Markov Decision Process,简称MDP)来描述,具体而言:机器处在一个环境中,每个状态为机器对当前环境的感知:机器只能通过动作来影响环境,当机器执行一个动作后,会使得环境按某种概率转移到另一个状态:同时,环境会根据潜在的奖赏函数反馈给机器一个奖赏.综合而言,强化学习主要包含四个要素:状态.动作.转移概率以及奖赏函数. ​ 根据上图,agent(智能体)在进行某个任务时,首…
写在前面的话:从今日起,我会边跟着硅谷大牛Siraj的MOVE 37系列课程学习Reinforcement Learning(强化学习算法),边更新这个系列.课程包含视频和文字,课堂笔记会按视频为单位进行整理. 课程表地址:https://github.com/llSourcell/Move_37_Syllabus 带字幕课程视频地址:https://www.bilibili.com/video/av31518766 本课作为导论,大致普及了一下机器学习和强化学习的概念和用途.其次,捎带介绍了一…
在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策过程(Markov Decision Process,以下简称MDP)来简化强化学习的建模. MDP这一篇对应Sutton书的第三章和UCL强化学习课程的第二讲. 1. 强化学习引入MDP的原因 强化学习的8个要素我们在第一节已经讲了.其中的第七个是环境的状态转化模型,它可以表示为一个概率模型,即在…
原文地址: https://www.cnblogs.com/pinard/p/9426283.html --------------------------------------------------------------------------------------- 在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策过程(Markov…
1.策略与环境模型 强化学习是继监督学习和无监督学习之后的第三种机器学习方法.强化学习的整个过程如下图所示: 具体的过程可以分解为三个步骤: 1)根据当前的状态 $s_t$ 选择要执行的动作 $ a_t $. 2)根据当前的状态 $s_t $ 和动作 $ a_t$ 选择转移后的状态 $s_{t+1} $. 3)根据在当前状态 $s_t$ 采取动作 $a_t$ 给出对应的奖励 $ r_{t+1} $. 因此我们可以得到强化学习中三个重要的要素:环境的状态 $S$,个体的动作 $A$,环境的奖励 $…
在之前的HMM系列中,我们对隐马尔科夫模型HMM的原理以及三个问题的求解方法做了总结.本文我们就从实践的角度用Python的hmmlearn库来学习HMM的使用.关于hmmlearn的更多资料在官方文档有介绍. 1. hmmlearn概述 hmmlearn安装很简单,"pip install hmmlearn"即可完成. hmmlearn实现了三种HMM模型类,按照观测状态是连续状态还是离散状态,可以分为两类.GaussianHMM和GMMHMM是连续观测状态的HMM模型,而Multi…
隐含马尔可夫模型并不是俄罗斯数学家马尔可夫发明的,而是美国数学家鲍姆提出的,隐含马尔可夫模型的训练方法(鲍姆-韦尔奇算法)也是以他名字命名的.隐含马尔可夫模型一直被认为是解决大多数自然语言处理问题最为快速.有效的方法. 现实世界中有一类问题具有明显的时序性,比如路口红绿灯.连续几天的天气变化,我们说话的上下文,HMM的基础假设就是,一个连续的时间序列事件,它的状态受且仅受它前面的N个事件决定,对应的时间序列可以成为N阶马尔可夫链. 假设今天是否有雾霾只由前天和昨天决定,于是就构成了一个2阶马尔可…
Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的随机文本".1 2. 隐马尔科夫过程1 3. 隐马模型基本要素及基本三问题2 4. 维特比算法2 5. 应用 HMM一开始是在信息论中应用的,后来才被应用到自然语言处理还有其他图像识别等各个2 6. 扩展数学之美系列十九 -- 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)2…
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google “I Love Natural Language Processing”估计就能找到)翻译后的HMM入门介绍如下,由于原文分了很多章节,我嫌慢了还是一次性整理,长文慎入吧. 一.介绍(Introduction) 我们通常都习惯寻找一个事物在一段时间里的变化模式(规律).这些模式发生在很多领域,比如计…
这里接着学习笔记一中的问题2,说实话问题2中的Baum-Welch算法编程时矩阵转换有点烧脑,开始编写一直不对(编程还不熟练hh),后面在纸上仔细推了一遍,由特例慢慢改写才运行成功,所以代码里面好多处都有print. 笔记一中对于问题1(概率计算问题)采用了前向或后向算法,根据前向和后向算法可以得到一些后面要用到的概率与期望值. 一.问题2 学习问题  已知观测序列,估计模型参数,使得在该模型下观测序列概率最大 隐马尔可夫模型的学习,根据训练数据除包括观测序列O外是否包括了对应的状态序列 I 分…