catalogue . 训练集 . 数据预处理 . 神经网络模型设计(对话集 <-> 问题集) . 神经网络模型设计(问题集 <-> 回答集) . RNN神经网络 . 训练 . 效果验证 1. 训练集 Mary moved to the bathroom. John went to the hallway. Where Daniel went back to the hallway. Sandra moved to the garden. Where John moved to t…
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LSTM and Answering Point Model 5: Bi…
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Attentive Reader Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LS…
BERT 论文阅读 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 由 @快刀切草莓君 阅读编写. 1 引言 两种为下游任务应用预训练模型表示的现存策略 基于特征 e.g. ELMo:使用包括预训练表示作为额外特征的特定任务架构 精调 e.g. GPT Generative Pre-trained Transformer 引入最少的特定任务参数 这两种策略都使用了单一方向语言模型 限…
javascript从定义到执行,JS引擎在实现层做了很多初始化工作,因此在学习JS引擎工作机制之前,我们需要引入几个相关的概念:执行环境栈.全局对象.执行环境.变量对象.活动对象.作用域和作用域链等,这些概念正是JS引擎工作的核心组件.这篇文章的目的不是孤立的为你讲解每一个概念,而是通过一个简单的demo来展开分析,全局讲解JS引擎从定义到执行的每一个细节,以及这些概念在其中所扮演的角色. var x = 1; //定义一个全局变量 x function A(y){ var x = 2; //…
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言理解的深度双向变换器预训练>,介绍一种新的语言表征模型BERT——来自变换器的双向编码器表征量.异于最新语言表征模型,BERT基于所有层的左.右语境来预训练深度双向表征量.BERT是首个大批句子层面和词块层面任务中取得当前最优性能的表征模型,性能超越许多使用任务特定架构的系统,刷新11项NLP任务当前最…