二叉搜索树 [四边形不等式优化区间dp] 题目描述 有 \(n\) 个结点,第 \(i\) 个结点的权值为 \(i\) . 你需要对它们进行一些操作并维护一些信息,因此,你需要对它们建立一棵二叉搜索树.在整个操作过程中,第i个点需要被操作 \(x_i\) 次,每次你需要从根结点一路走到第 \(i\) 个点,耗时为经过的结点数.最小化你的总耗时. 输入格式 第一行一个整数 \(n\) ,第二行 \(n\) 个整数 \(x_1\to x_n\). 输出格式 一行一个整数表示答案. 样例 样例输入 5…
Problem Description Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if…
剑指 Offer 33. 二叉搜索树的后序遍历序列 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果.如果是则返回 true,否则返回 false.假设输入的数组的任意两个数字都互不相同. 参考以下这颗二叉搜索树: 5 / \ 2 6 / \ 1 3 示例 1: 输入: [1,6,3,2,5] 输出: false 示例 2: 输入: [1,3,2,6,5] 输出: true 提示: 数组长度 <= 1000 解题思路: 解题之前,要先明晰一些基本概念. 后序遍历定义: [ 左子树 |…
前言 线段树+区间DP题,线段树却不是优化DP的,是不是很意外? 题面 二叉搜索树是一种二叉树,每个节点都有一个权值,并且一个点的权值比其左子树里的点权值都大,比起右子树里的点权值都小. 一种朴素的向二叉搜索树中插入节点的算法是,将新节点作为一个新的叶子节点插入树中,维持二叉搜索树的性质,并且不移动原有的节点. 现在有一个长度为 n n n 的排列 a a a,你可以任意重排第 l l l 到第 r r r 个数,但不移动其余数.接下来依次从 1 1 1 到 n n n 将 a i a_i ai…
看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1][j]+cost[i][j]);(或者是max(........),本博客以min为例来证明) 熟悉一般区间dp的同学应该清楚我们如果想得到最终的答案,一般要用三层for循环来计算(第一层为长度,第二层枚举起始点,第三层在起始点i和终点j之间寻找最优的分割点).显而易见它的时间复杂度为o(n^3),…
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的区间DP问题 d p[i][j]表示前i个节点,分为j个区间的最优策略值 cost[i][j]为从i到j节点的策略值 所以dp[i][j] = min(dp[k-1][j-1] + cost[k][i] 但是复杂度太高了 可以优化的地方有: cost数组值得求取: 考虑到cost(i,j)=ΣAxAy (i≤…
入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[i][j] = min(dp[i][j],dp[i][k] + dp[k+1][j] + sum[i][j]) 对于第i堆到第j堆合并的花费 他的子问题是第i个的合并顺序 op1:k实际上控制的是第i堆也就是起始堆的合并顺序 因为必须是相邻合并dp[i][i] 先合并dp[i+1][j]最后再来合并…
问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1, t2, …, tn.可以用01串给这些单词编码,即将每个单词与一个01串对应,使得任何一个单词的编码(对应的01串)不是另一个单词编码的前缀,这种编码称为前缀码. 使用前缀码编码一段文字是指将这段文字中的每个单词依次对应到其编码.一段文字经过前缀编码后的长度为: L=a1的编码长度×t1+a2的…
区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n天卖掉i..j货物的收益 dp[begin][end]=max(dp[begin][end-1]+value[end]*(n-len+1) ,dp[begin+1][end]+value[begin]*(n-len+1)); 注意理解 代码 递推形式 #include<bits/stdc++.h>…
题目:戳这里 题意:给一个不下降序列,有n个数.问能否构造一个二叉搜索树,满足父亲和儿子之间的gcd>1. 解题思路:其实这题就是构造个二叉搜索树,只不过多了个条件.主要得了解二叉搜索树的性质,比如一段区间[l,r],这段区间要么是[l-1]的右子树,要么是[r+1]的左子树.(二叉树中左子树都比根小,右子树都比根大 根据这个性质,用dfs构造二叉搜索树,构造的时候判断儿子和父亲的gcd是否大于1即可. 看到一个博客代码写的很漂亮,学习一下. 1 #include<bits/stdc++.h&…