T2 扩展BSGS T3 快速阶乘 给定整数n,质数p和正整数c,求整数s和b,满足n! / pb = s mod pc 考虑每次取出floor(n/p)个p因子,然后将问题转化为子问题. /************************************************************** Problem: 3283 User: idy002 Language: C++ Result: Accepted Time:1704 ms Memory:12380 kb ***…
扩展BSGS用于求解axΞb mod(n) 同余方程中gcd(a,n)≠1的情况 基本思路,将原方程转化为a与n互质的情况后再套用普通的BSGS求解即可 const int maxint=((1<<30)-1)*2+1; struct Hashmap{ static const int Ha=999917,maxe=46340; int E,lnk[Ha],son[maxe+5],nxt[maxe+5],w[maxe+5]; int top,stk[maxe+5]; …
1467: Pku3243 clever Y Time Limit: 4 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Description 小Y发现,数学中有一个很有趣的式子: X^Y mod Z = K 给出X.Y.Z,我们都知道如何很快的计算K.但是如果给出X.Z.K,你是否知道如何快速的计算Y呢? Input 本题由多组数据(不超过20组),每组测试数据包含一行三个整数X.Z.K(0 <= X, Z, K <= 109). 输入文…
每次把gcd(a,c)提到前面,直到a,c互质,然后就是普通BSGS了 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> #define LL long long using namespace std; struct hashtable{ static const int N=577399; int tot,hash…
Clever Y Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8666 Accepted: 2155 Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, Y, Z, we all know how to figure out K fast. However, give…
kuangbin的BSGS: c为素数: #define MOD 76543 int hs[MOD],head[MOD],next[MOD],id[MOD],top; void insert(int x,int y) { int k = x%MOD; hs[top] = x, id[top] = y, next[top] = head[k], head[k] = top++; } int find(int x) { int k = x%MOD; ; i = next[i]) if(hs[i] =…