sklearn preprocessing (预处理)】的更多相关文章

数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-score标准化 z-score标准化指的是将数据转化成均值为0方差为1的高斯分布,也就是通常说的z-score标准化,但是对于不服从标准正态分布的特征,这样做效果会…
预处理的几种方法:标准化.数据最大最小缩放处理.正则化.特征二值化和数据缺失值处理. 知识回顾: p-范数:先算绝对值的p次方,再求和,再开p次方. 数据标准化:尽量将数据转化为均值为0,方差为1的数据,形如标准正态分布(高斯分布). 标准化(Standardization) 公式为:(X-X_mean)/X_std 计算时对每个属性/每列分别进行. 将数据按其属性(按列进行)减去其均值,然后除以其方差.最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1. sklearn中…
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-s…
  关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的最小最大规范化方法(x-min(x))/(max(x)-min(x)) 除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 使用这种方法的目的包括: 1.对于方差非常小的属性可以…
1. one hot encoder sklearn.preprocessing.OneHotEncoder one hot encoder 不仅对 label 可以进行编码,还可对 categorical feature 进行编码: >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0…
对数据按列属性进行scale处理后,每列的数据均值变成0,标准差变为1.可通过下面的例子加深理解: from sklearn import preprocessing import numpy as np 测试数据: X = np.array([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]]) 使用sklearn进行scale处理时,有两种方式可供选择. 方式1:直接使用preprocessing.scale()方法: X_scaled = preproc…
一.standardization 之所以标准化的原因是,如果数据集中的某个特征的取值不服从标准的正太分布,则性能就会变得很差 ①函数scale提供了快速和简单的方法在单个数组形式的数据集上来执行标准化操作 from sklearn import preprocessing import numpy as np X=np.array([[1,-1,2], [2,0,0], [0,1,-1]]) X_scaled=preprocessing.scale(X) print(X_scaled) "&q…
本文主要是对照scikit-learn的preprocessing章节结合代码简单的回顾下预处理技术的几种方法,主要包括标准化.数据最大最小缩放处理.正则化.特征二值化和数据缺失值处理. 数学基础 均值公式: $$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$$ 方差公式: $$s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$$ 0-范数,向量中非零元素的个数. 1-范数: $$\|…
sklearn实现---归类为5大类 sklearn.preprocessing.scale()(最常用,易受异常值影响) sklearn.preprocessing.StandardScaler() sklearn.preprocessing.minmax_scale()(一般缩放到[0,1]之间,若新数据集最大最小值范围有变,需重新minmax_scale) sklearn.preprocessing.MinMaxScaler() sklearn.preprocessing.maxabs_s…
作用:去均值和方差归一化.且是针对每一个特征维度来做的,而不是针对样本. [注:] 并不是所有的标准化都能给estimator带来好处. “Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard…