堆模板(pascal)洛谷P3378】的更多相关文章

推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径在重心的子树内就已经相交) 删除重心(打上永久标记),对子树继续处理,转1 求重心是板子,算答案的方法要依题而定,一般都要容斥. 模板题洛谷传送门 calc函数中,头尾两个指针扫的计数方法也是一种套路 因为要sort,所以复杂度\(O(n\log^2n)\),不过蒟蒻实测你谷数据\(k\)不超过\(…
洛谷题目传送门 只是一个经过了蛇皮压行的模板... 总结?%%%yyb%%% #include<bits/stdc++.h> #define LL long long #define RG register #define R RG int #define G if(++ip==ie)fread(ip=buf,1,S,stdin) #define For \ R i,j,k,d; \ for(i=2;i<=N;i<<=1) \ for(d=i>>1,j=0;j&l…
题目链接: 洛谷 题目大意:求同余方程组 $x\equiv b_i(mod\ a_i)$ 的最小正整数解. $1\leq n\leq 10^5,1\leq a_i\leq 10^{12},0\leq b_i\leq 10^{12},b_i<a_i$,保证有解,答案不超过 $10^{18}$. (其实我没打成方程组形式是因为我 $latex$ 太差) 既然是模板就直接讲方法.假设不一定有解. 方法:每次将前 $i-1$ 个方程合并后的方程与第 $i$ 个方程合并,直到 $n$ 个方程全部合并完.…
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出一个$n$次多项式的逆元. 前置技能 快速数论变换(NTT),求一个数$x$在模$p$意义下的乘法逆元. 多项式的逆元 给定一个多项式$A(x)$,其次数为$deg_A$,若存在一个多项式$B(x)$,使其满足$deg_B≤deg_A$,且$A(x)\times B(x) \equiv 1 (mod…
洛谷题目传送门 最小表示是指一个字符串通过循环位移变换(第一个移到最后一个)所能得到的字典序最小的字符串. 因为是环状的,所以肯定要先转化为序列,把原串倍长. 设决策点为一个表示法的开头.比较两个决策点\(i,j\),找到它们的LCP(假设长度为\(k\)). 假设\(s_{i+k}>s_{j+k}\),那么显然决策\(s_{i...i+k}\)是分别不优于决策\(s_{j...j+k}\)的,直接跳过这一部分即可.\(s_{i+k}<s_{j+k}\)同理. 时间复杂度\(O(n)\). #…
分数规划是这样一个东西: 给定若干元素,每个元素有两个属性值\(a_i,b_i\),在满足题目要求的某些限制下选择若干元素并求出\(\frac{\sum a}{\sum b}\)的最大值. 如果没有限制的话,肯定是贪心的选. 假设当前选择了一个解\(x_0\),却并不是\(\frac{\sum a}{\sum b}\)的最大值,我们有 \[\frac{\sum a}{\sum b}>x_0\] 进而 \[\sum a-bx_0>0\] 这时候我们要求的东西变成了\(a-bx_0\),每个元素的…
洛谷题目传送门 仍然是一个板子. 不过蒟蒻去学了一下BIT维护区间修改区间求和,常数果真十分优秀 设数列为\(a_i\),差分数组\(d_ i=a_ i-a_ {i-1}\),前缀和\(s_i=\sum\limits_ {j=1}^ia_ j\) 显然有\(a_ i=\sum\limits_ {j=1}^id_ j\) 于是大力展开得到 \[s_i=\sum\limits_{j=1}^i(i-j+1)d_j\] \[s_i=(i+1)\sum\limits_{i=1}^jd_j-\sum\lim…
洛谷P3371 //spfa:求s到各点的最短路,可含负权边 #include <cstdio> using namespace std; ,max_m=,inf=; struct etype { int t,w,next; }; etype e[max_m]; ],cnt; int inq[max_n]; void add(int u,int v,int w) { cnt++;e[cnt].t=v;e[cnt].w=w; e[cnt].next=a[u];a[u]=cnt; } int ma…
题目传送门 解题思路: 首先说KMP的作用:对于两个字符串A,B(A.size() > B.size()),求B是否是A的一个字串或B在A里的位置或A里有几个B,说白了就是字符串匹配. 下面创设一个问题背景 : 有两个字符串A,B,求B在A中的位置. A : abcdcbd B: cdcb 对于上述问题,我们最先想到也就是最暴力的办法,就是把B整体从1~7每次一格的往右挪,每往挪一格,便把B从头到尾跟A匹配一遍,直到匹配不成功或全部匹配成功,如果匹配不成功,就再整体往右挪一格,这样的时间复杂度最…
题目描述 如题,初始小根堆为空,我们需要支持以下3种操作: 操作1: 1 x 表示将x插入到堆中 操作2: 2 输出该小根堆内的最小数 操作3: 3 删除该小根堆内的最小数 输入输出格式 输入格式: 第一行包含一个整数N,表示操作的个数 接下来N行,每行包含1个或2个正整数,表示三种操作,格式如下: 操作1: 1 x 操作2: 2 操作3: 3 输出格式: 包含若干行正整数,每行依次对应一个操作2的结果. 输入输出样例 输入样例#1: 5 1 2 1 5 2 3 2 输出样例#1: 2 5 说明…