SVM及其对偶】的更多相关文章

引自 http://my.oschina.net/wangguolongnk/blog/111349 1. 支持向量机的目的是什么? 对于用于分类的支持向量机来说,给定一个包含正例和反例(正样本点和负样本点)的样本集合,支持向量机的目的是寻找一个超平面来对样本进行分割,把样本中的正例和反例用超平面分开,但是不是简单地分看,其原则是使正例和反例之间的间隔最大. 超平面是什么呢?简单地说,超平面就是平面中的直线在高维空间中的推广.那么,对于三维空间,超平面就是平面了.对于更高维的空间,我们只能用公式…
Soft Margin SVM  (1)Recall 之前分析到SVM的模型为: \begin{align}\mathop{\min}&\quad \frac{1}{2}w^\prime w\nonumber\\\mathop{s.t}&\quad y_i(x_i^\prime w+b)\geq 1, i=1,2,\cdots,m\label{model:SVM}\end{align} 利用Lagrange乘子法转化为对偶问题: \begin{align}\mathop{\max}&…
背景 上一讲从对偶问题的角度描述了SVM问题,但是始终需要计算原始数据feature转换后的数据.这一讲,通过一个kernel(核函数)技巧,可以省去feature转换计算,但是仍然可以利用feature转换的特性.   什么是kernel Kernel的其实就是将向量feature转换与点积运算合并后的运算,如下, 概念上很简单,但是并不是所有的feature转换函数都有kernel的特性.   Kernel化的SVM 在对偶化的SVM解中,有三个地方会使用到kernel 计算截距b 计算QP…
之前的SVM非常的hard,要求每个点都要被正确的划分,这就有可能overfit,为此引入了Soft SVM,即允许存在被错分的点,将犯的错放在目 标函数中进行优化,非常类似于正则化. 将Soft SVM进行对偶转化后,发现与之前的hard SVM非常的像,只是其中一个系数多了个上界. 通过对阿尔法值的范围的讨论,将SVs分成三类:边界外的.free vector.bounded vector 最后讲的是模型的选择.需要注意的是,我们可以根据support vector的数量来确定cross v…
在上一篇文章中,我们推导出了 SVM 的目标函数: \[ \underset{(\mathbf{w},b)}{\operatorname{min}} ||\mathbf{w}|| \\ \operatorname{s.t.} \ y_i(\mathbf{w}^T\mathbf{x_i}+b) \ge \delta, \ \ i=1,...,m \] 由于求解过程中,限制条件中的 \(\delta\) 对结果不产生影响,所以简单起见我们把 \(\delta\) 替换成 1.另外,为了之后求解的方便…
1.对偶问题的推导 为什么要求解对偶问题?一是对偶问题往往更容易求解,二是可以自然的引入核函数. 1.1 用拉格朗日函数将原问题转化为“无约束”等价问题 原问题是: 写出它的拉格朗日函数: 然后我们的原问题就等价为: 为什么可以这样等价: 即:对于不满足约束条件的(b,w),min里面趋于无穷大,因此min就把这些b,w舍去了:对于满足约束条件的解,min里面就刚好是原来的目标函数,刚好与原问题等价. 1.2 导出拉格朗日对偶问题 首先我们有如下成立: 然后我们取右边式子中的“best”阿尔法,…
1.对偶问题的推导 为什么要求解对偶问题?一是对偶问题往往更容易求解,二是可以自然的引入核函数. 1.1 用拉格朗日函数将原问题转化为"无约束"等价问题 原问题是: 写出它的拉格朗日函数: 然后我们的原问题就等价为: 为什么可以这样等价: 即:对于不满足约束条件的(b,w),min里面趋于无穷大,因此min就把这些b,w舍去了:对于满足约束条件的解,min里面就刚好是原来的目标函数,刚好与原问题等价. 1.2 导出拉格朗日对偶问题 首先我们有如下成立: 然后我们取右边式子中的"…
在学习SVM(Support Vector Machine) 支持向量机时,对于线性可分的分类样本求出的分类函数为: 其中,分类超平面可以表示为:…
快毕业啦~~记得上一篇论文利用JointBoost+CRF做手绘草图的分割项目在3月份完结后,6月份去实习,9月份也没怎么认真找工作就立刻回来赶论文(由于分割项目与人合作难以写入毕业论文),从9月到1月一直狂写程序,其中过程就如去年10月开始做分割项目一样艰辛,不过现在工作也定了,论文也差不多了,可喜可贺~.这次的论文主要以手绘草图的分类为主,而分类方法我还是用的SVM支持向量机,用SVM做多分类,现在程序也基本完成了,所以想记录一下毕业论文中遇到个各种难题,我看了一些SVM,由于自己数学功底有…
下面我们抛开1中的问题.介绍拉格朗日对偶.这一篇中的东西都是一些结论,没有证明. 假设我们有这样的问题:$min_{w}$ $f(w)$,使得满足:(1)$g_{i}(w)\leq 0,1\leq i \leq k$,(2)$h_{i}(w)= 0,1\leq i \leq l$ 我们定义$L(w,\alpha ,\beta )=f(w)+\sum_{i=1}^{k}\alpha_{i}g_{i}(w)+\sum_{i=1}^{l}\beta_{i}h_{i}(w)$,其中$\alpha,\be…
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上. 1.基于最大间隔分隔数据 几个概念: 1.线性可分(linearly separable):对于图6-1中的圆形点和方形点,如果很容易就可以在图中画出一条直线将两组数据点分开,就称这组数据为线性可分数据 2.分隔超平面(separating hyperplane):将数据集分…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. 或者简单的可以理解为就是在高维空间中寻找一个合理的超平面将数据点分隔开来,其中涉及到非线性数据到高维的映射以达到数据线性可分的目的. 模型函数是:其中w(n维),b待定 2.算法推导 2.1几个基本概念: 2.1.1 函数间隔(function…
本文申明:本文原创,如转载请注明原文出处. 引言:上一篇我们讲到了logistic回归,今天我们来说一说与其很相似的svm算法,当然问题的讨论还是在线性可分的基础下讨论的. 很多人说svm是目前最好的分类器,那我们就来看看我们的svm好在哪里. 一:初识svm 问题:用一条直线把下图的圆球和五角星分离开来. 解答:有N种分法,如下图: 附加题:找出最佳分类? 解答:如图: Exe me?鬼知道哪一条是最佳?? 等等这个最佳分类是不是等价于,地主让管家给两个儿子分地,是不是只要让两家之间一样多就可…
SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归.SVM把分类问题转化为寻找分类平面的问题,并通过最大化分类边界点距离分类平面的距离来实现分类. 有好几个模型,SVM基本,SVM对偶型,软间隔SVM,核方法,前两个有理论价值,后两个有实践价值.下图来自龙老师整理课件. 基本概念 线性SVM,线性可分的分类问题场景下的SVM.硬间隔. 线性不可分SVM,很难找到超平面进行分类场景下的SVM.软间隔. 非线性SVM,核函数(应用最广的一种技巧,核函数…
SVM是一种二类分类模型,有监督的统计学习方法,能够最小化经验误差和最大化几何边缘,被称为最大间隔分类器,可用于分类和回归分析.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题.支持向量机的学习算法是求解凸二次规划的最优化算法. 一.基本原理 SVM是一个机器学习的过程,在高维空间中寻找一个分类超平面,将不同类别的数据样本点分开,使不同类别的点之间的间隔最大,该分类超平面即为最大间隔超平面,对应的分类器称为最大间隔分类器,对于二分类…
SVM迅速发展和完善,在解决小样本.非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.从此迅速的发展起来,已经在许多领域(生物信息学,文本和手写识别等)都取得了成功的应用.在地球物理反演当中解决非线性反演也有显著成效,例如(SVM在预测地下水涌水量问题等). SVM中的一大亮点是在传统的最优化问题中提出了对偶理论,主要有最大最小对偶及拉格朗日对偶. SVM的关键在于核函数.低维空间向量集通常难于划分,解决的方法是将它们映射到高维空间.但这个办法带来的困…
前言 支持向量机,也即SVM,号称分类算法,甚至机器学习界老大哥.其理论优美,发展相对完善,是非常受到推崇的算法. 本文将讲解的SVM基于一种最流行的实现 - 序列最小优化,也即SMO. 另外还将讲解将SVM扩展到非线性可分的数据集上的大致方法. 预备术语 1. 分割超平面:就是决策边界 2. 间隔:样本点到分割超平面的距离 3. 支持向量:离分割超平面距离最近的样本点 算法原理 在前一篇文章 - 逻辑回归中,讲到了通过拟合直线来进行分类. 而拟合的中心思路是求错误估计函数取得最小值,得到的拟合…
这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器到SVM> .<从线性回归到逻辑回归>两篇文章. 感知器: 前面的文章已经讲到,感知器的目标函数如下: $min \ L(w,b)$ 其中,$L(w,b)=-\sum_{i=1}^{n}[y_i*(w*x_i+b)]$ 对于上面这种无约束的最优化问题,一般采用的是梯度下降的办法,但是,考虑到…
原文链接:http://blog.csdn.net/v_july_v/article/details/7624837 作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得…
Support vector machines 支持向量机,简称SVM 分类算法的目的是学会一个分类函数或者分类模型(分类器),能够把数据库中的数据项映射给定类别中的某一个,从而可以预测未知类别. SVM是一种监督式学习的方法. 支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点 机:就是算法,机器学习常把一些算法看作是一个机器 SVM 其实就是一种很有用的二分类方法. 超平面: n维空间中, 满足n元一次方程a1x1+a2x2+...+anxn=b的点(x1,x2,...,xn)的全…
转载自:JerryLead http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html 11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数据稀疏时性能更优.关于SMO最好的资料就是他本人写的<Sequential Minimal Optimiza…
之前分为两部分讨论过SVM.第一部分讨论了线性SVM,并且针对线性不可分的数据,把原始的问题转化为对偶的SVM求解.http://www.cnblogs.com/futurehau/p/6143178.html 然后考虑到特征数量特别特别多的时候,引入核函数的求解.http://www.cnblogs.com/futurehau/p/6149558.html 但是,之前也遗留了一个问题,就是比如高斯核函数或其他的核函数,虽然large margin能够在一定程度上防止过拟合,但是加入你的核函数太…
一.Linear Support Vector Machine 接下来的讨论假设数据都是线性可分的. 1.1 SVM的引入:增大对测量误差的容忍度 假设有训练数据和分类曲线如下图所示: 很明显,三个分类器都能够正确分类训练数据,但是哪一个的效果更好呢?直觉告诉我们第三个,为什么呢? 这是因为第三个的那些点离分割超平面的距离较远,这样能够容忍更大的噪声, 鲁棒性更强. 1.2 间隔最大化问题的建模 我们的目标是寻找分割超平面导致间隔最大化.形象的说我们定义分割超平面两边的点与分割超平面的最短距离为…
SVM 是一块很大的内容,网上有写得非常精彩的博客.这篇博客目的不是详细阐述每一个理论和细节,而在于在不丢失重要推导步骤的条件下从宏观上把握 SVM 的思路. 1. 问题由来 SVM (支持向量机) 的主要思想是找到几何间隔最大的超平面对数据进行正确划分,与一般的线性分类器相比,这样的超平面理论上对未知的新实例具有更好的分类能力.公式表示如下:  : 所有点中最小的几何间隔, 实际上就是支持向量上的点的几何间隔  : 训练样本及对应标签, , 作用是将第 i 个样本点的几何间隔转化为正数 公式的…
背景 之前所讨论的SVM都是非常严格的hard版本,必须要求每个点都被正确的区分开.但是,实际情况时很少出现这种情况的,因为噪声数据时无法避免的.所以,需要在hard SVM上添加容错机制,使得可以容忍少量噪声数据.   "软"化问题 软化SVM的思路有点类似正规化,在目标函数添加错误累加项,然后加一个系数,控制对错误的容忍度,并且在约束中添加错误容忍度的约束,形式如下:   现在问题就变成了(d+1+N)个变量和2N个约束.ξ用来描述错误的容忍度.C是常量,用来控制容忍度.C越大,由…
背景 上一篇文章总结了linear hard SVM,解法很直观,直接从SVM的定义出发,经过等价变换,转成QP问题求解.这一讲,从另一个角度描述hard SVM的解法,不那么直观,但是可以避免feature转换时的数据计算,这样就可以利用一些很高纬度(甚至是无限维度)的feature转换,得到一些更精细的解.   拉格朗日乘子式 首先,回顾一下SVM问题的定义,如下: 线性约束很烦,不方便优化,是否有一种方法可以将线性约束放到优化问题本身,这样就可以无拘无束的优化,而不用考虑线性约束了.拉格朗…
主要内容 一:SVM简介 二:线性分类 三:分类间隔 四:核函数 五:松弛变量 SVM简介 支持向量机(support vector Machine)是由Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中. 支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模式的复杂性(即对特定训练样本的学习精度,Accurary)和学习能力(即无错误地识别任意样本…
转自:http://blog.csdn.net/zouxy09/article/details/10947323/ LibLinear(SVM包)使用说明之(一)README zouxy09@qq.com http://blog.csdn.net/zouxy09 本文主要是翻译liblinear-1.93版本的README文件.里面介绍了liblinear的详细使用方法.更多信息请参考: http://www.csie.ntu.edu.tw/~cjlin/liblinear/ 在这里我用到的是L…
一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题.其学习策略是使间隔最大化,也就是常说的基于结构风险最小化寻找最优的分割超平面.SVM学习问题可以表示为凸优化问题,也可以转变为其对偶问题,使用SMO算法求解.线性SVM与LR有很多相似的地方,分类的准确性能也差不多,当数据量比较少时SVM可能会占据优势,但是SVM不方便应用于软分类(probabi…
引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不用多想),考虑约束最优化问题: 称为约束最优化问题的原始问题. 现在如果不考虑约束条件,原始问题就是: 因为假设其连续可微,利用高中的知识,对求导数,然后令导数为0,就可解出最优解,很easy. 那么,问题来了(呵呵...),偏偏有约束条件,好烦啊,要是能想办法把约束条件去掉就好了,bingo! 拉…