关于EM的理解】的更多相关文章

EM算法理解的九层境界 EM 就是 E + M EM 是一种局部下限构造 K-Means是一种Hard EM算法 从EM 到 广义EM 广义EM的一个特例是VBEM 广义EM的另一个特例是WS算法 广义EM的再一个特例是Gibbs抽样算法 WS算法是VAE和GAN组合的简化版 KL距离的统一 第一层境界, EM算法就是E 期望 + M 最大化 最经典的例子就是抛3个硬币,跑I硬币决定C1和C2,然后抛C1或者C2决定正反面, 然后估算3个硬币的正反面概率值. &a…
一.概述 概率模型有时既含有观测变量,又含有隐变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接利用极大似然估计法或者贝叶斯估计法估计模型参数.但是,当模型同时又含有隐变量时,就不能简单地使用这些方法.EM算法适用于带有隐变量的概率模型的参数估计,利用极大似然估计法逐步迭代求解. 二.jensen不等式   是区间 上的凸函数,则对任意的 ,有不等式:   即: E[f(X)] ≥ f(E(X))  ,因为(x1+x2+...+xn)/n=E(X),同理可得E(f(X)).当x1=x2…
em 版本:CSS1 说明: 自己的理解: 注意地方: 浏览器默认大小为16px. 谷歌浏览器最小字体为12px. font-size;有继承性. 判断步骤: []看该元素本身有没有设置字体大小: 有:那么,boder.width.height.padding.margin.line-height”等值,都是相对字体大小的. font-size*em值=等于实际需要值.        (魔芋例子: <h1>天空</h1> h1 {font-size:10px;margin:2em;…
众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差.这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度. 然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北人”还是“四川人”,我想如果把这个数据集的概率密度画出来,大约是这个样子: 好了不要吐槽了,能画成这个样子我已经很用…
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算法,其重要性可见一斑. EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计.它与极大似然估计的区别就是它在迭代过程中依赖极大似然估计方法.极大似然估计是在模型已知的情况下,求解模型的参数$\theta$,让抽样出现的概率最大.类似于求解一元方…
任意浏览器的默认字体高度16px(16像素). 所有未经调整的浏览器都符合: 1em=16px.那么12px=0.75em,10px=0.625em.为了简化font-size的换算,需要在css中的body选择器中声明font-size=62.5%,这就使em值变为 16px*62.5%=10px, 这样12px=1.2em, 10px=1em 也就是说只需要将你的原来的px数值除以10,然后换上em作为单位就行了. 1.浏览器的默认字体大小是16px 2.如果元素自身没有设置字体大小,那么元…
EM算法浅析,我准备写一个系列的文章: EM算法浅析(一)-问题引出 EM算法浅析(二)-算法初探 一.基本认识 EM(Expectation Maximization Algorithm)算法即期望最大化算法.这个名字起的很理科,就是把算法中两个步骤的名称放到名字里,一个E步计算期望,一个M步计算最大化,然后放到名字里就OK. EM算法是一种迭代算法,是1977年由Demspster等人总结提出,用于有隐含变量的概率模型参数的极大似然估计,或极大后验概率估计.这里可以注意下,EM算法是针对于有…
一.简介 EM 的英文是 Expectation Maximization,所以 EM 算法也叫最大期望算法. 我们先看一个简单的场景:假设你炒了一份菜,想要把它平均分到两个碟子里,该怎么分? 很少有人用称对菜进行称重,再计算一半的分量进行平分.大部分人的方法是先分一部分到碟子 A 中,然后再把剩余的分到碟子 B 中,再来观察碟子 A 和 B 里的菜是否一样多,哪个多就匀一些到少的那个碟子里,然后再观察碟子 A 和 B 里的是否一样多--整个过程一直重复下去,直到份量不发生变化为止. 你能从这个…
em详解      em可以理解成“倍”. em会以父级元素中所设置的字体像素值为基准值进行成倍放大: 字体大小=(父级元素中的字体像素 * em的值) 例: 网页部分代码如下: 1.我现在没有在父级元素中设置任何字体像素值,而直接在<h2>标签中设置了字体大小为“3em”.   此时将使用浏览器的默认设置(一般为12px)作为基准像素 网页中显示如下 现在我在父级元素<body>中加上控制字体大小的像素值 设置为30px,然后再保存刷新下网页. 可以看到字体明显大了许多. 总结:…
前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来推导一波. Jensen 不等式 在满足: 一个 concave 函数, 即 形状为 "\(\bigcap\)" 的函数 \(f(x)\) \(\lambda_j \ge 0\) \(\sum \limits _j \lambda_j = 1\) 类似于随机变量的分布 的前提条件下, 则有…