特征处理(Feature Processing)】的更多相关文章

原文链接:https://developers.google.com/machine-learning/crash-course/feature-crosses/ 特征组合是指两个或多个特征相乘形成的合成特征.特征的相乘组合可以提供超出这些特征单独能够提供的预测能力. 1- 对非线性规律进行编码 特征组合是指通过将两个或多个输入特征相乘来对特征空间中的非线性规律进行编码的合成特征.通过创建一个特征组合可以解决非线性问题. 特征组合的种类 可以创建很多不同种类的特征组合.例如: [A X B]:将…
一.什么是特征工程? "Feature engineering is the process of transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data." 简而言之,就是将原始数据转换为模型更容易理解的数据类型,从而提高模型…
不多说,直接上干货! 肯定也有不少博友,跟我一样,刚开始接触的时候,会对这三个概念混淆. 以下是,特征处理.特征提取.特征转换和特征选择的区别! 特征处理主要包含三个方面:特征提取.特征转换和特征选择. 见我下面的博客 机器学习概念之特征提取(Feature extraction) 机器学习概念之特征转换(Feature conversion) 机器学习概念之特征选择(Feature selection)…
[本文链接:http://www.cnblogs.com/breezedeus/p/4109456.html,转载请注明出处] 我的博客主营地迁至github,欢迎朋友们有空去看看:http://breezedeus.github.io/,阅读体验好很多. 本文具体内容:http://breezedeus.github.io/2014/11/15/breezedeus-feature-processing.html.…
 最近学习特征工程(Feature Enginnering)的相关技术,主要包含两块:特征选取(Feature Selection)和特征抓取(Feature Extraction).这里记录一些要点,作为备忘.   特征选取 R中的FSelector包实现了一些特征选取的算法,主要分两大类:   Algorithms for filtering attributes: cfs, chi.squared, information.gain, gain.ratio, symmetrical.unc…
线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题转化为分类问题,回归分析是一个有监督学习问题. 线性其实就是一系列一次特征的线性组合,在二维空间中是一条直线,在三维空间中是一个平面,然后推广到n维空间,可以理解维广义线性吧. 例如对房屋的价格预测,首先提取特征,特征的选取会影响模型的精度,比如房屋的高度与房屋的面积,毫无疑问面积是影响房价的重要因…
线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题转化为分类问题,回归分析是一个有监督学习问题. 线性其实就是一系列一次特征的线性组合,在二维空间中是一条直线,在三维空间中是一个平面,然后推广到n维空间,可以理解维广义线性吧. 例如对房屋的价格预测,首先提取特征,特征的选取会影响模型的精度,比如房屋的高度与房屋的面积,毫无疑问面积是影响房价的重要因…
特征图(或者叫地标图,landmark maps)利用参数化特征(如点和线)的全局位置来表示环境.如图1所示,机器人的外部环境被一些列参数化的特征,即二维坐标点表示.这些静态的地标点被观测器(装有传感器的机器人)利用多目标跟踪的方法跟踪,从而估计机器人的运动. Fig.1 Feature maps. 机器人的定位是通过建立传感器观测特征和图map中特征之间的关系来确定的.预测特征的位置和量测特征位置之间的差别被用来计算机器人的位姿.这种方式,类似于多目标跟踪问题,但是不想传统的多目标跟踪问题,这…
概述:上节咱们说了特征工程是机器学习的一个核心内容.然后咱们已经学习了特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些方法技巧.但是光会前面的一些内容,还不足以应付实际的工作中的很多情况,例如如果咱们的原始数据的features太多,咱们应该选择那些features作为咱们训练的features?或者咱们的features太少了,咱们能不能利用现有的features再创造出一些新的与咱们的target有更加紧密联系…
一般在machine learning意义上,我们常说的feature,是一种对数据的表达.当然,要衡量一种feature是否是合适的表达,要根据数据,应用,ML的模型,方法....很多方面来看.一般来说,Feature应该是informative(富有信息量),discriminative(有区分性)和independent(独立)的.那么具体怎么选择feature,其实一直是一个开放的问题.在机器学习里面,feature的选择是至关重要的:对于同一种学习的模型,同样的学习方法,同样的数据,选…