R语言解读多元线性回归模型】的更多相关文章

转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业…
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是…
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 线性回归主要用来做预测模型. 1.准备数据集: X Y 0.10 42.0 0.11 43.5 0.12 45.0 0.13 45.5 0.14 45.0 0.15 47.5 0.16 49.0 0.17 53.0 0.18 50.0 0.20 55.0 0.21 55.0 0.23 60.0 > s=read.table("test-1.txt", header…
一.模型假设 传统多元线性回归模型 最重要的假设的原理为: 1. 自变量和因变量之间存在多元线性关系,因变量y能够被x1,x2-.x{k}完全地线性解释:2.不能被解释的部分则为纯粹的无法观测到的误差 其它假设主要为: 1.模型线性,设定正确: 2.无多重共线性: 3.无内生性: 4.随机误差项具有条件零均值.同方差.以及无自相关: 5.随机误差项正态分布 具体见另一篇文章:回归模型的基本假设 二.估计方法 目标:估计出多元回归模型的参数 注:下文皆为矩阵表述,X为自变量矩阵(n*k维),y为因…
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数,系数压缩趋近于0就可以认为舍弃该特征. 岭回归(Ridge Regression)和Lasso回归是在普通最小二乘线性回归的基础上加上正则项以对参数进行压缩惩罚. 首先,对于普通的最小二乘线性回归,它的代价函数是: 通过拟合系数β来使RSS最小.方法很简单,求偏导利用线性代数解方程组即可. 根据线…
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Long-term trend) : 时间序列可能相当稳定或随时间呈现某种趋势. 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function). 2.季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列…
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x1,  x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中: 代表随机误差, 其中随机误差分为:可解释的误差 和 不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义…
R语言利用ROCR评测模型的预测能力 说明 受试者工作特征曲线(ROC),这是一种常用的二元分类系统性能展示图形,在曲线上分别标注了不同切点的真正率与假正率.我们通常会基于ROC曲线计算处于曲线下方的面积AUC(area under curve),并以此峰面积来衡量相应分类模型的性能. 操作 继续使用telecom churn数据集作为样例数据集 library(caret) data(churn) str(churnTrain) churnTrain = churnTrain[,!names(…
目录 1.调整模型参数来提高性能 1.1 创建简单的调整模型 2.2 定制调整参数 2.使用元学习来提高性能 2.1 集成学习(元学习)概述 2.2 bagging 2.3 boosting 2.4 随机森林 1)训练随机森林 2)评估随机森林性能 1.调整模型参数来提高性能 参数调整:调节模型合适的选项的过程,如股票C5.0决策树模型中的trials参数,神经网络中的调节节点.隐层数目,SVM中的核函数等等. caret包自动调整参数:train函数,为分类和回归的150种不同机器学习模型自动…
目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化(ROC曲线) 2.评估未来的性能 2.1 保持法 2.2 交叉验证 2.3 自助法抽样 1.评估分类方法的性能 拥有能够度量实用性而不是原始准确度的模型性能评价方法是至关重要的. 3种数据类型评价分类器:真实的分类值:预测的分类值:预测的估计概率.之前的分类算法案例只用了前2种. 对于单一预测类别,可将predict函数设定为…