NIPS2017-The neural hawks process】的更多相关文章

NIPS2017哪些论文值得关注 论文链接 1.首先这篇文章研究的是 event stream,什么是event stream呢 ? 假如你是一个医生,你每天会看到很多病人 ,对于每一个病人,你都有他一长串的历史记录,有他在不同时间做了什么检查,得了什么病 假如你在淘宝.亚马逊买东西的记录,在不同时间买了不同的东西, 这也是一个event stream 在推特或者 微博上面 你可以看到 好友 在不同的时间发表微博,这些都是 event stream 2.研究event stream的意义 因为基…
catalogue . SOM简介 . SOM模型在应用中的设计细节 . SOM功能分析 . Self-Organizing Maps with TensorFlow . SOM在异常进程事件中自动分类的可行性设计 . Neural gas简介 . Growing Neural Gas (GNG) Neural Network . Simple implementation of the "growing neural gas" artificial neural network .…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式:Zhu Y, Xu X, Ye Z. FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective funct…
基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简要的介绍了一下关于视觉跟踪的挑战和应用,通过分类集中讨论基于在线学习的现代跟踪方法.我们提供了对每种分类中的代表性方法的详细描述,同时检查它们的优点和缺点.而且,一些最具代表性的算法被实现,来提供定量的参考.最后,我们列出了几个关于视觉跟踪研究的未来发展趋势. 1    引言 <未翻译> 2 生成…
目录 Abstract Introduction PROPOSED CNN STRUCTURE INITIAL CNN ANALYSIS EXPERIMENTAL STRUCTURE AND ALGORITHMS MATERIALS AND METHODS DATASET PREPROCESSING OF IMAGES FEW-SHOT LEARNING AND DISTANCE TRAINING STRATEGY CONVOLUTIONAL NEURAL NETWORKS NEAREST NE…
我醉了呀,当我花一天翻译完后,发现已经网上已经有现成的了,而且翻译的比我好,哎,造孽呀,但是他写的是论文笔记,而我是纯翻译,能给读者更多的思想和理解空间,并且还有参考文献,也不错哈,反正翻译是写给自己看的 文章方向:语音分离, 论文地址:Conv-TasNet:超越理想的语音分离时频幅度掩蔽 博客地址:https://www.cnblogs.com/LXP-Never/p/14769751.html 论文代码:https://github.com/naplab/Conv-TasNet | htt…
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model compression for deep learning based speech enhancem…
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40th Annual Computer Software and Applications Conference) 单位: Nagoya University(名古屋大学).NTT Secure Platform Laboratories(NTT安全平台实验室) 方法概述 数据:81个恶意软件日志文件…
课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ______________________________________________________________________________________________________________________________________________________________…