题意是问是否存在非负整数 a,使得任取非负整数 x,f(x) 能够被 65 整除,其中 f(x) = 5*x^13 + 13*x^5 + k*a*x,如存在,输出 a 的最小值,如不存在,输出 no. 由于 f(x) 的每一项都乘以 x,那么 f(x) = m*x (m为常数),若 65 | f(x) (即 f(x) 能够被 65 整除) ,则 65 | x*f(x),65 | x*x*f(x),... 取 f(1) = 5 + 13 + k*a = 18 + k*a:那么问题便转化成了给定 k…