应用分析 它的作用就是题目给了一个选物品的限制条件,要求刚好选$m$个,让你最大化(最小化)权值, 然后其特点就是当选的物品越多的时候权值越大(越小). 算法分析 我们先不考虑物品限制条件, 假定我们要最大化权值. 然后其中我们二分一个$C$,表示选一次物品的附加权值, 如果我们$C$越大,我们选的物品个数越多,权值越大, 于是当选的物品个数大于$m$时,减小$C$,否则增大$C$, 最后计算答案的时候去掉$C$值的影响即可. Updata:这回还是讲一讲算法吧-->理论算法分析 首先我们拿到一…
P2619 [国家集训队2]Tree I 题意 题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有\(need\)条白色边的生成树. 题目保证有解. 输入输出格式 输入格式: 第一行\(V,E,need\)分别表示点数,边数和需要的白色边数. 接下来\(E\)行 每行\(s,t,c,col\)表示这边的端点(点从\(0\)开始标号),边权,颜色(\(0\)白色\(1\)黑色). 输出格式: 一行表示所求生成树的边权和. 输入输出样例 输入样例#1: 2 2 1 0 1…
论文 提出问题 在某些题目中,强制规定只能选 \(k\) 个物品,选多少个和怎么选都会影响收益,问最优答案. 算法思想 对于上述描述的题目,大部分都可以通过枚举选择物品的个数做到 \(O(nk^2)\) 或 \(O(nk)\) 的 \(\mathrm{DP}\),如果没有选择个数的限制的话,复杂度大概会降为 \(O(n)\) 级别. 先不考虑数量限制. 假设要最小化权值. 还是拿题说吧:给定长度为 \(n\) 的正整数序列,要求将该序列划分为 \(k\) 段,记每段之和为 \(sum(i)\),…
我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的暴力\(DP\),转移好写,形式优美,但复杂度不对 该怎样发现它的凸性质呢 1.打表√ 2.冷静分析一波,每一种球肯定是越多越好,于是我们先固定选择\(a\)个普通球,然后那\(b\)个大师球肯定是从大到小挑选.这样的话每多选一个,新增的收益就会下降一点,也就是说这是个上凸函数.(口胡如果假的话,就…
今天模拟赛有一道林克卡特树,完全没有思路 赛后想了一想,不就是求\(k+1\)条不相交的链,使其权值之和最大嘛,傻了. 有一个最裸的\(DP\),设\(f[i][j][k]\)表示在以\(i\)为根的子树中,选了\(j\)条链,\(k=0\)表示\(i\)不在链上,\(k=1\)表示\(i\)是链的一端,\(k=2\)表示\(i\)在链的中间 这样就随便转移了,就是个\(O(nk^2)\)的树上背包 然后呢,又傻了,这能怎么优化? 我先在这里Orz一下大佬BLUESKY007,没有学过wqs二分…
假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来,而若选择不超过k条链则可能有链不得不被cut拆开,即使不会被拆开也可以通过选择单点来达到恰好k+1条(下设k=k+1). 那么问题变为在树上选择k条点不相交的链使边权和最大.最简单的dp就是设f[i][j]为i子树中选j条链的最大权值,且用一维012状态记录i这个点在子树中的度数,转移类似于一个树…
[学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \leq k \leq n \leq 10^5, -10^9 \leq a_i \leq 10^9\) 先假装都会 \(1 \leq k \leq n \leq 1000\) 的 \(dp\) 做法以及 \(k = 1\) 的子问题 实际上这个问题还可以是个费用流模型: 对于序列中每一个点 \(i\)…
dp容易想到,但没法进一步优化了. 考虑贪心,每次选出价值最大的物品.但这显然是不对的因为会影响其他物品的选择. 于是考虑加上反悔操作.每次选出一个物品后,将其相邻两物品删除,再将原物品价值变为相邻两物品价值和-原物品价值.这样如果再次选择该物品就可以达到改为选择相邻两物品的效果.并且最优方案中相邻两物品一定要么都选要么都不选,否则不如选择原物品. 这种带反悔的贪心策略似乎类似地在网络流算法中出现,应该是一个比较普遍的做法,然而并不会证. #include<iostream> #include…
前言 \(WQS\)二分听起来是个很难的算法,其实学起来也并不是那么难. 适用范围 在某些题目中,会对于某个取得越多越优的物品,限定你最多选择\(k\)个,问你能得到的最优答案. 例如这道题目:[CF739E]Gosha is hunting. 这些题目一般都可以通过枚举选择的物品个数并\(O(n)DP\)来做到\(O(nk)\). 但如果随着选择物品个数的增加,得到贡献的斜率是不递增的,我们就可以用\(WQS\)二分,来将\(O(nk)\)的时间复杂度优化为\(O(nlogn)\). 大致思想…
题意:x轴上有n个人,让你放置m个集合点,使得每个人往离他最近的集合点走,所有人走的距离和最短. 把距离视为花费,设$dp[i][k]$表示前i个人分成k段的最小花费,则有递推式$dp[i][k]=min\{dp[j][k-1]+w(j,i)\}$,其中$w(j,i)$可以$O(1)$求出. 显然,如果考虑段数的话,光状态数就有n^2个,肯定行不通.不过这题的最优解对段数的函数是凸的,因此可以用WQS二分来打破段数的限制. 给每个集合点加上一个额外的花费c,然后忽略段数的限制,这样递推式就变成了…