模型的偏差bias以及方差variance】的更多相关文章

1. 模型的偏差以及方差: 模型的偏差:是一个相对来说简单的概念:训练出来的模型在训练集上的准确度. 模型的方差:模型是随机变量.设样本容量为n的训练集为随机变量的集合(X1, X2, ..., Xn),那么模型是以这些随机变量为输入的随机变量函数(其本身仍然是随机变量):F(X1, X2, ..., Xn).抽样的随机性带来了模型的随机性. 我们认为方差越大的模型越容易过拟合:假设有两个训练集A和B,经过A训练的模型Fa与经过B训练的模型Fb差异很大,这意味着Fa在类A的样本集合上有更好的性能…
模型性能的度量 在监督学习中,已知样本 ,要求拟合出一个模型(函数),其预测值与样本实际值的误差最小. 考虑到样本数据其实是采样,并不是真实值本身,假设真实模型(函数)是,则采样值,其中代表噪音,其均值为0,方差为. 拟合函数的主要目的是希望它能对新的样本进行预测,所以,拟合出函数后,需要在测试集(训练时未见过的数据)上检测其预测值与实际值之间的误差.可以采用平方误差函数(mean squared error)来度量其拟合的好坏程度,即 误差期望值的分解 经过进一步的研究发现,对于某种特定的模型…
转发:http://blog.csdn.net/mingtian715/article/details/53789487请移步原文 内容参见stanford课程<机器学习>   对于已建立的某一机器学习模型来说,不论是对训练数据欠拟合或是过拟合都不是我们想要的,因此应该有一种合理的诊断方法.   偏差和方差 评价数据拟合程度好坏,通常用代价函数J(平方差函数).如果只关注Jtrain(训练集误差)的话,通常会导致过拟合,因此还需要关注Jcv(交叉验证集误差).   高偏差:Jtrain和Jcv…
1.首先 Error = Bias + Variance  Error反映的是整个模型的准确度, Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度, Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性. 2.Bias与Variance往往是不能兼得的  在一个实际系统中,Bias与Variance往往是不能兼得的.如果要降低模型的Bias,就一定程度上会提高模型的Variance,反之亦然. 造成这种现象的根本原因是,我们总是希望试图用有限…
偏差(bias) 偏差度量了学习算法的期望预测与真实结果的偏离程序, 即 刻画了学习算法本身的拟合能力 . 方差(variance) 方差度量了同样大小的训练集的变动所导致的学习性能的变化, 即 刻画了数据扰动所造成的影响 .…
针对高偏差.高方差问题的解决方法: 1.解决高方差问题的方案:增大训练样本量.缩小特征量.增大lambda值 2.解决高偏差问题的方案:增大特征量.增加多项式特征(比如x1*x2,x1的平方等等).减少lambda值 隐藏层数的选择对于拟合效果的影响: 隐藏层数过少,神经网络简单,参数少,容易出现欠拟合: 隐藏层数过多,神经网络复杂,参数多,容易出现过拟合,同时计算量也庞大. 事实上,如果经常应用神经网络,特别是大型神经网络的话,会发现越大型的网络性能越好,如果发生了过拟合,可以使用正则化的方法…
title: [概率论]4-3:方差(Variance) categories: - Mathematic - Probability keywords: - Variance - Standard Deviation toc: true date: 2018-03-23 22:22:11 Abstract: 本文介绍继期望之后分布的另一个重要数学性质,方差 Keywords: Variance,Standard Deviation 开篇废话 这两天更新有点频繁,但是没办法,必须快速的完成的基础…
Vector 计算 均值(mean) 和 方差(variance) 本文地址: http://blog.csdn.net/caroline_wendy/article/details/24623187 vector<>类型的数组, 计算均值和方差的最简方法. 代码: double sum = std::accumulate(std::begin(resultSet), std::end(resultSet), 0.0); double mean = sum / resultSet.size()…
误差分析可以更系统地做出决定.如果你准备研究机器学习的东西或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统.拥有多么复杂的变量,而是构建一个简单的算法.这样你可以很快地实现它.研究机器学习的问题时,会花一天的时间试图很快的把结果搞出来.即便效果不好,运行得不完美,通过交叉验证来检验数据,一旦做完,就可以画出学习曲线.通过画出学习曲线以及检验误差来找出算法是否有高偏差和高方差的问题,或者别的问题.在这样分析之后,再来决定用更多的数据训练,或者加入更多的特征变量.这么做的原因是刚接…
绘制学习曲线非常有用,比如你想检查你的学习算法,运行是否正常.或者你希望改进算法的表现或效果.那么学习曲线就是一种很好的工具.学习曲线可以判断某一个学习算法,是偏差.方差问题,或是二者皆有. 为了绘制一条学习曲线,通常先绘制出训练集数据的平均误差平方和(Jtrain),或者交叉验证集数据的平均误差平方和(Jcv).将其绘制成一个关于参数m的函数.也就是一个关于训练集.样本总数的函数.m一般是一个常数,比如m等于100,表示100组训练样本.但我们要自己取一些m的值,也就是说对m的取值做一点限制,…
源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In this exercise, you will implement regularized linear regression and use it to study models with different bias-variance properties. 1. Regularized Lin…
偏差造成的误差-准确率和欠拟合 方差-精度和过拟合 Sklearn代码 理解bias &variance 在模型预测中,模型可能出现的误差来自两个主要来源,即:因模型无法表示基本数据的复杂度而造成的偏差(bias),或者因模型对训练它所用的有限数据过度敏感而造成的方差(variance).我们会对两者进行更详细的探讨. 一.偏差造成的误差-准确率和欠拟合 如前所述,如果模型具有足够的数据,但因不够复杂而无法捕捉基本关系,则会出现偏差.这样一来,模型一直会系统地错误表示数据,从而导致准确率降低.这…
背景:实现一个线性回归模型,根据这个模型去预测一个水库的水位变化而流出的水量. 加载数据集ex5.data1后,数据集分为三部分: 1,训练集(training set)X与y: 2,交叉验证集(cross validation)Xval, yval: 3,测试集(test set): Xtest, ytest. 一:正则化线性回归(Regularized Linear Regression) 1,可视化训练集,如下图所示: 通过可视化数据,接下来我们使用线性回归去拟合这些数据集. 2,正则化线…
1.正规化的线性回归 (1)代价函数 (2)梯度 linearRegCostFunction.m function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFU…
比如实现这样一个场景: "在屏幕宽度的1/4的地方放置一个View" 使用传统布局时,实现按照屏幕的宽度(高度),或者相对两个View之间距离的一个比例来进行布局,就显得非常麻烦,但是当使用ConstraintLayout时,就可以很简单地实现这样的需求. Bias Bias就是为了实现这种需求而设计出来的. 我们来举例说明,看下图: 当前我们是将这个按钮相对屏幕宽度居中显示. 那么我们如何将该按钮放到宽度1/4的地方呢? 其实非常简单,我们看右侧的属性栏: 这里有个滑动条,就是偏差的…
https://www.jianshu.com/p/e1c8270477bc?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation 三个式子分别表示了样本的平均值.样本方差无偏估计值.样本协方差的无偏估计值,如果把S.C中的N-1换做N就成了表示方差与协方差了. 函数名称:cov函数功能: 求协方差矩阵函数用法: cov(X)  % cov(X,0) = cov(…
covariance, co本能的想到双变量,用于描述两个变量之间的关系. correlation,相关性,covariance标准化后就是correlation. covariance的定义: 期望,实例减去均值,积 covariance matrix也就是相关性矩阵的原始形式,描述了一群变量之间的相互关系 一下是一个例子: For eg here’s an example : Covariance matrix is of dimension #cols * #cols, diagonal…
http://blog.csdn.net/xidiancoder/article/details/71341345 平均值 平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小:其数学定义为 以下面10个点的CPU使用率数据为例,其平均值为17.2. 14 31 16 19 26 14 14 14 11 13 1 方差.标准差 方差这一概念的目的是为了表示数据集中数据点的离散程度:其数学定义为: 标准差与方差一样,表示的也是数据点的离散程度:其在数学上定义为方差的平方根:…
怎么区分哪些措施对我们有用呢?----首先根据learning curve来判断你的问题是high bias or variance 当你的算法是high bias问题时,如果你get more training examples是没有用处的,这时我们就不要浪费时间在get5 more training examples上面了. 对如何选择neural network architecture(选择几层hidden layer以及神经网络的大小)的建议 我们可以选择相对于来说"small&quo…
1.样本矩阵 如果是一个随机变量,那么它的样本值可以用一个向量表示.相对的,如果针对一个随机向量,那么就需要利用矩阵表示,因为向量中的每一个变量的采样值,都可以利用一个向量表示. 然后,一个矩阵可以利用行向量组与列向量组进行表示. 2.数学期望和方差的定义 3.协方差的定义式 4.协方差矩阵的定义 参考:http://blog.csdn.net/itplus/article/details/11452743…
[白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来解释 集成学习.并且从名著中延伸了具体应用场景来帮助大家深入这个概念. 在机器学习过程中,会遇到很多晦涩的概念,相关数学公式很多,大家理解起来很有困难.遇到类似情况,我们应该多从直觉角度入手思考,用类比或者举例来附会,这样往往会有更好的效果. 我在讲解论述过程中给自己的要求是:在生活中或者名著中找一个例子,…
原文地址:https://www.jianshu.com/p/a02c6bd5d5e9 error来自哪?来自于偏差Bias和方差Variance. 就如打靶时瞄准一个点\(\overline{f}\),打出的点\(f^*\)分布在该点周围.那么,\(\overline{f}\)与实际靶心\(\hat{f}\)的距离就是偏差Bias,打出的点\(f^*\)与\(\overline{f}\)的分布距离就是方差Variance. 可将偏差理解为没瞄准,方差理解为瞄准了但是打得太散. 简单模型的方差小…
error来自哪? 来自于偏差Bias和方差Variance. 就如打靶时瞄准一个点f平均,打出的点f星分布在该点周围. 该点与实际靶心f帽的距离就是偏差Bias, 打出的点与该点的分布距离就是方差Variance. 可将偏差理解为没瞄准,方差理解为瞄准了但是打得太散. 简单模型的方差小于复杂模型的方差. 因为简单模型比较集中,其权重W不太会受到data变化的影响, 可考虑极端例子f(x)=c,该模型方差为0. 简单模型的偏差大于复杂模型的偏差. 因为模型是个函数/假设集,定好模型后,funct…
一.什么是偏差和方差 偏差(Bias):结果偏离目标位置: 方差(Variance):数据的分布状态,数据分布越集中方差越低,越分散方差越高: 在机器学习中,实际要训练模型用来解决一个问题,问题本身可以理解为靶心,而模型就是子弹,则子弹呈现在靶子上弹孔位置就可能出现偏差和方差的情况,也就是说训练出的模型可能犯偏差和方差两种错误: 二. 模型误差 模型误差 = 偏差(Bias) + 方差(Variance) + 不可避免的误差 1)不可避免的误差 无能为力的.客观存在的.由于各种各样的原因导致的误…
当我们在机器学习领域进行模型训练时,出现的误差是如何分类的? 我们首先来看一下,什么叫偏差(Bias),什么叫方差(Variance): 这是一张常见的靶心图 可以看左下角的这一张图,如果我们的目标是打靶子的话,我们所有的点全都完全的偏离了这个中心的位置,那么这种情况就叫做偏差 再看右上角这张图片,我么们的目标是右上角这张图片中心的红色位置,我们射击的点都围绕在这个红色的点的周围,没有大的偏差,但是各个点间过于分散不集中,就是有非常高的方差 我们进行机器学习的过程中,大家可以想象,我们实际要训练…
偏置和方差 参考资料:http://scott.fortmann-roe.com/docs/BiasVariance.html http://www.cnblogs.com/kemaswill/ Bias-variance 分解是机器学习中一种重要的分析技术.给定学习目标和训练集规模,它可以把一种学习算法的期望误差分解为三个非负项的和,即本真噪音.bias和 variance. 本真噪音是任何学习算法在该学习目标上的期望误差的下界:( 任何方法都克服不了的误差) bias 度量了某种学习算法的平…
众所周知,对于线性回归,我们把目标方程式写成:. (其中,f(x)是自变量x和因变量y之间的关系方程式,表示由噪音造成的误差项,这个误差是无法消除的) 对y的估计写成:. 就是对自变量和因变量之间的关系进行的估计.一般来说,我们无从得之自变量和因变量之间的真实关系f(x).假设为了模拟的缘故,我们设置了它们之间的关系(这样我们就知道了它们之间的真实关系),但即便如此,由于有这个irreducible error,我们还是无法得之真正的y是多少.当然,这并没有关系.因为我们想要知道的就是自变量和因…
以下内容参考 cousera 吴恩达 机器学习课程 1. Bias 和 Variance 的定义 Bias and Variance 对于改进算法具有很大的帮助作用,在bias和Variance的指引之下,我们可以有方向性的对算法进行改进. 模型较简单时,可能导致Bias,相反模型较为复杂的时候,容易导致high Variance. 如下图所示,随着模型复杂度的增加,训练数据集上的误差将会减小,而交叉验证集上的误差是先减小后增大.所以根据在训练集和交叉验证集上的误差大小就可以判断模型是除了bia…
本文地址为:http://www.cnblogs.com/kemaswill/,作者联系方式为kemaswill@163.com,转载请注明出处. 机器学习的目标是学得一个泛化能力比较好的模型.所谓泛化能力,是指根据训练数据训练出来的模型在新的数据上的性能.这就牵扯到机器学习中两个非常重要的概念:欠拟合和过拟合.如果一个模型在训练数据上表现非常好,但是在新数据集上性能很差,就是过拟合,反之,如果在训练数据集和新数据集上表现都很差,就是欠拟合,如下图所示 其中蓝叉点表示训练数据,蓝色的线表示学到的…
http://blog.csdn.net/pipisorry/article/details/50638749 偏置-方差分解(Bias-Variance Decomposition) 偏置-方差分解(Bias-Variance Decomposition)是统计学派看待模型复杂度的观点.Bias-variance 分解是机器学习中一种重要的分析技术.给定学习目标和训练集规模,它可以把一种学习算法的期望误差分解为三个非负项的和,即本真噪音noise.bias和 variance. noise 本…