Description 加里敦大学有一个龙舟队,龙舟队有n支队伍,每只队伍有m个划手,龙舟比赛是一个集体项目,和每个人的能力息息相关,但由于龙舟讲究配合,所以评价队伍的能力的是一个值c = (b1*b2...*bm)/(a1*a2...*am),其中bi表示第i个位置标准能力值,ai表示在队伍中第i个位置的划手的能力值.最 后通过约分,我们会得到c= B/A,其中gcd(B,A)=1,即A, B是互质的, 但是由于比赛现场的情况不一样,我们认为在现场压力为M的情况下,队伍最后的表现情况认为是C=…
对给定模数分解质因数后约分即可.依然常数巨大过不了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 10010 ')) c=getchar();return c;}…
求$\frac{b_1b_2b_3...b_m}{a_1a_2a_3...a_m}\%M$ M<=1e18,m<=100000,数据组数<=50 用pollard-rho分解M的质因数,提取出$b_i,a_i$与M不互质的部分处理一下 #include<cstdio> #include<algorithm> typedef long long i64; typedef long double ld; ],*ptr=buf+; int G(){ ==ptr)frea…
[BZOJ4891][TJOI2017]龙舟(Pollard_rho) 题面 BZOJ 洛谷 题解 看了半天题....就是让你求\(\frac{b}{a}\)在模\(M\)意义下的值... 首先把\(M\)分解,把\(a,b\)中的这些质因子全部分解出来,剩下的部分和\(M\)互质,直接求逆就行了,分解出来的部分如果分母大于分子,显然无逆,输出-1就行了. #include<iostream> #include<cstdio> #include<cstdlib> #in…
题目链接 容易发现如果我们求出p和q这题就差不多快变成一个sb题了. 于是我们就用Pollard Rho算法进行大数分解. 至于这个算法的原理,emmm 其实也不是很清楚啦 #include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<cctype> #include<ctime> using namespace std; inlin…
题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include <stdio.h> #include <algorithm> #include <string.h> #include <cstdlib> #include <cmath> using namespace std; long long n; long lon…
整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范围比较小) 无论素数判定还是因子分解,试除法(Trial Division)都是首先要进行的步骤.令m=n,从2~根n一一枚举,如果当前数能够整除m,那么当前数就是n的素数因子,并用整数m 将当前数除尽为止. 若循环结束后m是大于1的整数,那么此时m也是n的素数因子. 事例如HDU1164:15mm…
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Pollard Rho是一个非常玄学的方式,用于在O(n^1/4)的期望时间复杂度内计算合数n的某个非平凡因子.事实上算法导论给出的是O(√p),p是n的某个最小因子,满足p与n/p互质.但是这些都是期望,未必符合实际.但事实上Pollard Rho算法在实际环境中运行的相当不错. Pollard Rh…
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][Status][Discuss] Description   Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个.…
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学MillerRabin素数测试). 期望下,\(Pollard\ Rho\)算法可以达到极快的复杂度. 核心思想 在\(ZJOI2019Day1\)讲课期间,它是被\(CQZ\)神仙作为随机算法内的一部分来进行介绍的. 由此可见,其核心思想便是随机二字. 操作流程 首先,我们先用\(MillerRabi…
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要把询问范围加到 \(10^{18}\) ,再多组询问呢? Miller 和 Rabin 建立了Miller-Rabin 质数测试算法. \(\\\) Fermat 测试 首先我们知道费马小定理: \[ a^{p-1}\equiv 1\pmod p \] 当且仅当 \(p\) 为素数时成立. 逆命题是…
BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Output 4 直接MR+Pollard rho分解质因数即可.具体可见https://www.cnblogs.com/suika/p/9127065.html 记得判重,我的map不知道为何T了.   代码: #include <cstdio> #inc…
BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个. Output 第一行CAS(CAS<=350,代表测试数据的组数) 以下CAS行:每行一个数字,保证是在64位长整形范围内的正数. 对于每…
前言 $Miller-Robbin$ 与 $Pollard Rho$ 虽然都是随机算法,不过用起来是真的爽. $Miller Rabin$ 算法是一种高效的质数判断方法.虽然是一种不确定的质数判断法,但是在选择多种底数的情况下,正确率是可以接受的. $Pollard Rho$ 是一个非常玄学的方式,用于在 $O(n^{1/4})$ 的期望时间复杂度内计算合数$n$的某个非平凡因子. 事实上算法导论给出的是 $O(\sqrt p)$ , $p$ 是 $n$ 的某个最小因子,满足 $p$ 与 $\f…
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点图.关于\(Millar Robin\)算法的时间复杂度在我的博客应该有所备注.由于本人不擅长时间复杂度分析,如果对于时间复杂度有任何疑问,欢迎在下方指出. 1.1 问题的引入 给定一正整数\(N \in \mathbb{N}^*\),试快速找到它的一个因数. 很久很久以前,我们曾学过试除法来解决这…
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机算法固有的循环 Pollard Rho算法在其他因数分解算法[3]中不算太出众,但其空间复杂度Θ(1)的优势和好打的代码使得OIer更倾向于使用Pollard Rho算法 毕竟试除法太慢了,谁没事打Pollard Rho不打试除法 Pollard Rho原理 生日悖论 如果一年只有365天(不计算闰…
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是质数,否则\(n\)是合数. 代码 bool is_prime(int n){ if(n<2) return 0; int m=sqrt(n); for(int i=2;i<=m;i++){ if(n%i==0) return 0; } return 1; } 方法二.线性筛 用 \(O(n)\)…
第三十五个知识点:给针对ECDLP问题的Pollard rho,Pollard "Kangaroo",parallel Pollard rho攻击的一个粗略的描述 我们的目标是对任意一个有限循环阿贝尔群\(G\),解决离散对数问题\(h = g^x\).问题进行详细描述,给定一个循环群\(G = <g>\),\(G\)的阶是素数\(p\),给定\(G\)中元素\(h\),我们需要找到这样的\(x\)使得\(h = g^x\)成立.我们使用上一篇中的方法进行计算时,时间复杂度…
x = lcm/gcd,假设答案为a,b,那么a*b = x且gcd(a,b) = 1,因为均值不等式所以当a越接近sqrt(x),a+b越小. x的范围是int64的,所以要用Pollard_rho算法去分解因子.因为a,b互质,所以我们把相同因子一起处理. 最多16个不同的因子:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, 乘积为 614889782588491410, 乘上下一个质数53会爆int64范围. 所以剩下暴力枚举一下就好. #include…
目录 问题 流程 代码 生日悖论 end 问题 给定n,要求对n质因数分解 普通的试除法已经不能应用于大整数了,我们需要更快的算法 流程 大概就是找出\(n=c*d\) 如果\(c\)是素数,结束,不是继续递归处理. 具体一点的话 1.先对n进行\(miller\_rabin\)测试,是素数就直接结束了 如果不会的话,看我前篇博客的介绍吧 为何还要多写个\(miller\_rabin\),他没有非平凡因子,他要保证复杂度? 2.随机基底a和c,生成序列\(x_{0}=a,x_{i}=x_{i-1…
两个没什么卵用的算法. 只放一下模板: BZOJ3667 //BZOJ 3667 //by Cydiater //2017.2.20 #include <iostream> #include <queue> #include <map> #include <ctime> #include <cmath> #include <cstring> #include <string> #include <cstdlib>…
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<ctime> #include<cmath> #include<iostream> using namespace std; #define LL long long LL n; #define maxs 80 LL fac[maxs],num[maxs],lf…
RhoPollard Rho是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:MillerRabinMillerRabin素数测试. 操作流程 首先,我们先用MillerRabinMillerRabin判断当前数xx是否为质数,若是,则可直接统计信息并退出函数 然后是各种证明及优化,我觉得不大实用,这个板子是我改了很多遍了,也过了很多题的板子.用着很舒服,无论卡常,不卡常,速度相差不大,也可以加read. #include <bits/stdc++.h> using namespac…
题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gcd与b/gcd互质,由此我们可以先用Pollard_rho法对lcm/gcd进行整数分解, 然后对其因子进行深搜找出符合条件的两个互质的因数,然后再都乘以gcd即为输出答案. #include <iostream> #include <stdio.h> #include <alg…
Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N <…
#include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> #include <algorithm> #include <math.h> #include <stdlib.h> #include<time.h> #define ll long long #define INF 0x3f3f3f3f #define ma…
链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约数. 思路:大数的质因数分解仅仅能用随机算法Miller Rabin和Pollard_rho.在測试多的情况下正确率是由保证的. 代码: #include <iostream> #include <cstdio> #include <cstring> #include &l…
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/problem/P4607 题解 首先观察一些性质. 一个回文串可以轮换产生多少个本质不同的串?周期那么多个. 可是有一种特殊情况,就是对于长度为偶数的回文串\(a=ss^Rss^Rss^R...ss^R\) (\(s^R\)表示\(s\)的reverse), 如果轮换位数恰好等于周期的一半,那么会产生\(…
ACM常用模板合集 #include <bits/stdc++.h> using namespace std; typedef long long ll; ll pr; ll pmod(ll a, ll b, ll p) { return (a * b - (ll)((long double)a / p * b) * p + p) % p; } //普通的快速乘会T ll gmod(ll a, ll b, ll p) { ll res = 1; while (b) { if (b &…
Pollard-Rho 是一个很神奇的算法,用于在 $O(n^{\frac{1}4}) $的期望时间复杂度内计算合数 n 的某个非平凡因子(除了1和它本身以外能整除它的数).事书上给出的复杂度是 \(O(\sqrt{p})\) , p 是 n 的某个最小因子,满足 p 与 n/p 互质.虽然是随机的,但 Pollard Rho 算法在实际环境中运行的相当不错,不会被卡. 简单来说:Pollard-Rho算法是 John Pollard发明的一种能 快速找到大整数的一个非1.非自身的因子 的算法.…