In this post we take a tour of the most popular machine learning algorithms. It is useful to tour the main algorithms in the field to get a feeling of what methods are available. There are so many algorithms available and it can feel overwhelming whe…
在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在来看一下多分类的情况. 现实中相对于二分类问题,我们更常遇到的是多分类问题.多分类问题如何求解呢?有两种方式.一种是方式是修改原有模型,另一种方式是将多分类问题拆分成一个个二分类问题解决. 先来看一下第一种方式:修改原有模型.即:把二分类逻辑回归模型变为多分类逻辑回归模型. (二分类逻辑回归称为binary…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 3 Learning Theory 3.1 Regularization and model selection 模型选择问题:对于一个学习问题,可以有多种模型选择.比如要拟合一组样本点,…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA --…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1    Introduction    1 1.1    What is Machine Learning    1 1.2    学习心得和笔记的框架    1 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA -- "知…
5 Techniques To Understand Machine Learning Algorithms Without the Background in Mathematics Where does theory fit into a top-down approach to studying machine learning? In the traditional approach to teaching machine learning, theory comes first req…
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型, 通常通过增加数据集的规模,可以获得更好的结果. 但是如果数据集特别大,则首先应该检查这么大规模是否真的必要,也许只用 1000个训练集也能获得较好的效果,可以绘制学习曲线来帮助判断. 17.2 随机梯度下降法 Stochastic Gradient Descent 如果必须使用一个大规模的训练集…
Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Building a Spam Classifier6.4.1 Prioritizing What to Work On首先是在设计机器学习系统时需要着重考虑什么问题.以垃圾邮件分类为例.1.确定用监督学习的方法进行学习和预测.2.确定关于邮件的特征.关于挑选特征,实际工作中,是遍历整个训练集,选出出现次数…
逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn])T以及每个特征的权重w=([w1,w2,...,wn])T,阈值为b,目标y是两个分类标签---1和-1.为了便于叙述,把b并入权重向量w,记作,特征向量则扩充为.(为了简便的缘故,下面还是都写成w和x) 事实上,我们已经学习过一种分类算法了.在<机器学习---感知机(Machine Learn…
机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的. 最大似然估计的原理 给定一个概率分布,假定其概率密度函数(连续分布)或概率质量函数(离散分布)为,以及一个分布参数,我们可以从这个分布中抽出一个具有个值的采样,通过利用,我们就能计算出其概率: 但是,我们可能不知道的值,尽管我们知道…