目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:传送门  Portal  原题目描述在最下面.  给一个数n,由k次操作.每次操作等概率的把n变成他的一个因数(\(1\leq x\leq n\)),问k次操作后得到的数的期望是多少. Solution: \(n = p1^{a1}*...*pm^{am}\) 积性函数: \(fk(n) = fk(p1^{a1})*...*fk(pm^{am})\) \(dp[j]\…
CD 628B 题目大意:给定一个数字(<=3*10^5),判断其能被4整除的连续子串有多少个 解题思路:注意一个整除4的性质: 若bc能被4整除,则a1a2a3a4...anbc也一定能被4整除: 利用这个性质,先特判第一位数字是否能被4整除,可以则++cnt, 之后从第二位数字开始,设当前位为i,先判断a[i]能否被4整除,可以则++cnt, 再判断a[i-1]*10+a[i]能否被4整除,可以则cnt = cnt + (i) 相关证明: 设一整数各个位置为a1,a2,a3,...,an,b…
CF 628A 题目大意:给定n,b,p,其中n为进行比赛的人数,b为每场进行比赛的每一位运动员需要的水的数量, p为整个赛程提供给每位运动员的毛巾数量, 每次在剩余的n人数中,挑选2^k=m(m <=n)个人进行比赛,剩余的n-m个人直接晋级, 直至只剩一人为止,问总共需要的水的数量和毛巾的数量 解题思路:毛巾数很简单: n*p即可 水的数量:1,2,4,8,16,32,64,128,256,512,提前打成一个表, 根据当前剩余的人数n在表中二分查找最大的小于等于n的数,结果即为本次进行比赛…
Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Makoto has a big blackboard with a positive integer nn written on it. He will perform the following action exactly k…
题目地址:CF1097D Makoto and a Blackboard 首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP: 令 \(f_{i,j}\) 为第 \(i\) 次替换后出现 \(p^j\) 的概率 边界: \[f_{0,c}=1\] 状态转移方程: \[f_{i,j}=\sum_{t=j}^{c} \frac{f_{i-1,t}}{t+1}\] 目标: \[\sum_{j=0}^{c}\ f_{k,j}\ p^j\] 考虑一般情况,将 \(n\) 分解质因数:…
算是记一下昨天晚上都想了些什么 官方题解   点我 简单题意 给定两个正整数$n$和$k$,定义一步操作为把当前的数字$n$等概率地变成$n$的任何一个约数,求$k$步操作后的期望数字,模$1e9 + 7$. $$n \leq 10^{15}, k \leq 10^4$$ 我的思路 设$f(n, k)$表示$n$在$k$步操作之后的期望数字,假设$n$的约数有$m$个,分别为$d_1, d_2, \dots, d_m$,有递推式 $$f(n, k) = \frac{1}{m}\sum_{i =…
unrated 选手悠闲做题,然后只做出四个滚蛋了 符合 div3 一贯风格,没啥难算法 E最后就要调出来了,但还是赛后才A的 CF1343A Candies 传送门 找到一个 \(x\),使得存在一个正整数 \(k>1\),满足 \(\sum_{i=0}^{k-1}2^i x=n\) 给定 \(n\) \[\sum_{i=0}^{k-1}2^i x=n\Rightarrow 2^k-1=\frac{n}{x} \] 那么我们只要枚举 \(x\in[1,\sqrt n]\),如果 \(x\mid…
D - Ears 题目链接:D - Ears 大意:你在一个\(0-L\)的数轴上行走,从整数格出发,在整数格结束,可以在整数格转弯.每当你经过坐标为\(i-0.5\)的位置时(\(i\)是整数),在\(i\)的位置放置一个石子.现在给出最后的石子序列,但这个序列有可能是不合法的,定义一次操作是将第\(i\)个位置上记录的石子\(-1\)或\(+1\),求最少的操作数使得给定序列成为一个合法序列 分析: 我们记录一次行走的起点为\(S\),终点为\(T\),在这次行走中到达的最左边的点为\(L\…
Makoto has a big blackboard with a positive integer n written on it. He will perform the following action exactly k times: Suppose the number currently written on the blackboard is v . He will randomly pick one of the divisors of v (possibly 1 and v)…
### Day1: ### **Problem C:** 设$k_i​$为$[A, B]​$中二进制第$i​$位是1的数的个数. 给出$k_0 \cdots k_{63}​$, 求出$[A, B]​$. **Solution:** 从高位开始考虑.找到最大的$m, k_m \neq 0$, 那么只有2种情况: - $A \lt 2^m \leq B$: 显然只可能$B = 2^m+k_m-1, A = B-2k_0\ or\ A = B-2k_0-1$ . check一下就好了.- $A, B…