DW(一):大数据DW架构参考】的更多相关文章

DW一直以来是企业信息与决策支持系统的核心组件,随着各类日志.社交.传感等非结构化数据的加入,企业内部数据按指数级增长,传统DW已经达到一个关键临界点——需要大量的资源投入到硬件.优化.支持和维护中,当前大部分使用Apache Hadoop来处理各种来源的大数据,但传统数据仓库不允许最终用户查询非结构化数据,此外,传统数据仓库并没有针对低延迟大容量数据负载和高吞吐量复杂分析工作负载进行优化——而这是大数据的需求之一. 下面例举当前互联网行业基于大数据的数据仓库技术构架参考 目录: 大数据DW逻辑…
今天我们来看一下淘宝.美团和滴滴的大数据平台,一方面进一步学习大厂大数据平台的架构,另一方面也学习大厂的工程师如何画架构图.通过大厂的这些架构图,你就会发现,不但这些知名大厂的大数据平台设计方案大同小异,架构图的画法也有套路可以寻觅. 淘宝大数据平台 淘宝可能是中国互联网业界较早搭建了自己大数据平台的公司,下图是淘宝早期的 Hadoop 大数据平台,比较典型. 淘宝的大数据平台基本也是分成三个部分,上面是数据源与数据同步:中间是云梯 1,也就是淘宝的 Hadoop 大数据集群:下面是大数据的应用…
大数据的时代已经来了,信息的爆炸式增长使得越来越多的行业面临这大量数据需要存储和分析的挑战.Hadoop作为一个开源的分布式并行处理平台,以其高拓展.高效率.高可靠等优点越来越受到欢迎.这同时也带动了hadoop商业版的发行.这里就通过大快DKhadoop为大家详细介绍一下hadoop大数据平台架构内容. 目前国内的商业发行版hadoop除了大快DKhadoop以外还有像华为云等.虽然发行方不同,但在平台架构上相似,这里就以我比较熟悉的dkhadoop来介绍. 1.大快Dkhadoop,可以说是…
原文地址:https://blog.csdn.net/bingdata123/article/details/79927507 Google是大数据时代的奠基者,其大数据技术架构一直是互联网公司争相学习和 研究的重点,也是行业大数据技术架构的标杆和示范. 1.谷歌的数据中心 谷歌已经建立了世界上最快.最强大.最高质量的数据中心,它的8个主要数据中心都远离其位于加州山景城的总部,分别位于美国南卡罗来纳州的伯克利郡,爱荷华州的康瑟尔布拉夫斯,乔治亚州的道格拉斯郡,俄克拉荷马州的梅斯郡,北卡罗来纳州的…
原文地址:http://www.csdn.net/article/2015-10-06/2825849 量化派是一家金融大数据公司,为金融机构提供数据服务和技术支持,也通过旗下产品“信用钱包”帮助个人用户展示经济财务等状况,撮合金融机构为用户提供最优质的贷款服务.金融的本质是风险和流动性,但是目前中国对于个人方面的征信行业发展落后于欧美国家,个人消费金融的需求没有得到很好的满足.按照央行最新数据,目前央行征信中心的数据覆盖人口达到8亿人[1],但其中有实际征信记录的只有3亿人左右,有5亿人在征信…
在使用淘宝时发现搜索框很神奇,它可以将将我们想要的商品全部查询出来,但是我们并感觉不到数据库查询的过程,速度很快.通过阅读这篇文章让我知道了搜索框背后包含着很多技术,对我以后的学习可能很有借鉴. 平时都常用搜索框,应该用的都是在线搜索,应该是在数据库中查询信息.但什么是离线搜索呢?在阿里工程中把“将各种来源数据转换处理后送入搜索引擎等‘在线’服务的系统称为“离线”系统.离线系统是一个大数据系统,它有以下一些特点: 1.任务模型上区分全量和增量 (1)全量是指将搜索业务数据全部重新处理生成,并传送…
Hadoop 起源于Google Lab开发的Google File System (GFS)存储系统和MapReduce数据处理框架.2008年,Hadoop成了Apache上的顶级项目,发展到今天,Hadoop已经成了主流的大数据处理平台,与Spark.HBase.Hive.Zookeeper等项目一同构成了大数据分析和处理的生态系统.Hadoop是一个由超过60个子系统构成的系统集合.实际使用的时候,企业通过定制Hadoop生态系统(即选择相应的子系统)完成其实际大数据管理需求.Hadoo…
1 Lambda架构介绍 Lambda架构划分为三层.各自是批处理层,服务层,和加速层.终于实现的效果,能够使用以下的表达式来说明. query = function(alldata) 1.1 批处理层(Batch Layer, Apache Hadoop) 批处理层主用由Hadoop来实现,负责数据的存储和产生随意的视图数据. 计算视图数据是一个连续的操作.因此.当新数据到达时,使用MapReduce迭代地将数据聚集到视图中. 将数据集中计算得到的视图,这使得它不会被频繁地更新.依据你的数据集…
离线?在阿里搜索工程体系中我们把搜索引擎.在线算分.SearchPlanner等ms级响应用户请求的服务称之为“在线”服务:与之相对应的,将各种来源数据转换处理后送入搜索引擎等“在线”服务的系统统称为“离线”系统. 特点:1. 任务模型上区分全量和增量(1)全量是指将搜索业务数据全部重新处理生成,并传送给在线引擎,一般是每天一次.这么做有两个原因:有业务数据是daily更新:引擎需要全量数据来高效的进行索引整理和预处理,提高在线服务效率.(2)增量是指将上游数据源实时发生的数据变化更新到在线引擎…
1 业务架构 风控平台是相对独立的系统,信审的案件可以从借款端平台推过来,也可以从第三方平台推过来.信审案件到达风控平台后,自动创建工作流,根据风控流程处理各流程环节任务. •自动决策 风控流程自动处理案件,访问第三方合作伙伴的接口,获取用户黑名单.欺诈数据和多头借贷等数据,查询名单数据,决策引擎输出各环节处理结果.自动决策后出三个结果,自动通过.转人工.拒绝. • 人工信审 根据决策引擎输出的结果进行转人工处理,人工通过初审和复核岗,给出具体信审结果,信审通过的案件给出风险等级和具体额度. •…