题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s3+s4)+(s12+s13+s14+s23+s24+s34)-(s123+s124+s134+s234)+s1234 其中s...为某硬币超过限制的方案数 求s的方法: 如s1:硬币1超过限制,就是硬币1至少选了num1+1个,其他随便,所以s1=dp[V-c1*(num1+1)] 同理s12 = dp…
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案. 为了避免重复的方案被转移,所以我们以硬币种类为第一层循环,这样阶段性的增加硬币. 一定要注意这个第一层循环要是硬币种类,并且初始 f[0] = 1. f[0] = 1; for (int i = 1; i <= 4; ++i) { for (int j = B[i]; j <= MaxS; +…
Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理 [Problem Description] 略 [Solution] 上述题目等价于:有\(4\)种物品,每种物品有\(d_i\)个,且每种物品的体积为\(c_i\),问有多少种方法装满容量为\(s\)的背包?可以很容易想到跑多重背包即可,但是发现复杂度为\(O(4V\cdot n)\).不可行. 题目要求的东西也等价于求以下等式有多少组满足条件的解: \[ c_1\cdot x_1+c_2\cdot x_2+c_3\cd…
1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000 Output 每次的方法数 Sample Input 1 2 5 10 2 3 2 3 1 10 1000 2 2 2 900…
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ------------------------------------------------------------------------ #include<cstdio> #include<algorithm> #include<cstring>   using namespace std;   typedef long long ll;   const int maxn = 1…
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Status][Discuss] Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,…
1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 只有4种物品,每种物品有数量限制 不考虑数量限制,\(f(i)\)凑出i的方案数,一遍完全背包就行了,注意先枚举物品 然后对于超过限制容斥: \[ 都不超过限制=所有方案- \ge 1个超限制+\ge 2个超限制-... \] i超限制就是i至少选了\(d_i+1\)个,其他任意选 #includ…
题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][Status][Discuss] Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3…
题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西, 请问每次有多少种付款方法.其中di,s<=100000,tot<=1000. 题解: 首先考虑一个简单的问题,如果去掉题目中对于个数的限制,即给你四种面值的的硬币,问你有多少种方案能凑成 si的价值.欸我们瞬间发现这是个完全背包的裸题,那果断乱搞. 首先我们做一遍完…
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜欢这道题,真的非常巧妙.不加限制,该题会变得特别模板.有限制后,似乎正着求有些困难,我们就考虑反着求,即简单容斥一下. 我们先求出不加限制的方案数,再将不合法的方案数依次减掉. 考虑容斥原理:总方案 - $\sum$ 1个不合法 + $\sum$ 2个不合法 - $\sum$ 3个不合法......…