Carmichael Numbers (快速幂)】的更多相关文章

题意:给你一个数,让你判断是否是非素数,同时a^n%n==a (其中 a 的范围为 2~n-1) 思路:先判断是不是非素数,然后利用快速幂对每个a进行判断 代码: #include <iostream> #include <cmath> #include <cstdio> #include <algorithm> #define ll long long using namespace std; bool isprime(ll num) { ) return…
POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Carmichael Number 的简化版 /* * Created: 2016年03月30日 22时32分15秒 星期三 * Author: Akrusher * */ #include <cstdio> #include <cstdlib> #include <cstring&g…
Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a ps…
POJ1995 Raising Modulo Numbers 计算(A1B1+A2B2+ ... +AHBH)mod M. 快速幂,套模板 /* * Created: 2016年03月30日 23时01分45秒 星期三 * Author: Akrusher * */ #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <ctime> #…
Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5532   Accepted: 3210 Description People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, oth…
ZOJ2150 快速幂,但是用递归式的好像会栈溢出. #include<cstdio> #include<cstdlib> #include<iostream> #include<cmath> using namespace std; long long M,i; #define LL long long int _work(LL a,LL n) { LL ans=1; while(n){ if(n&1){ ans=(ans*a)%M; n--; }…
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and…
Problem Description Xinlv wrote some sequences on the paper a long time ago, they might be arithmetic or geometric sequences. The numbers are not very clear now, and only the first three numbers of each sequence are recognizable. Xinlv wants to know…
题意: 思路: 对于每个幂次方,将幂指数的二进制形式表示,从右到左移位,每次底数自乘,循环内每步取模. #include <cstdio> typedef long long LL; LL Ksm(LL a, LL b, LL p) { LL ans = 1; while(b) { if(b & 1) { ans = (ans * a) % p; } a = (a * a) % p; b >>= 1; } return ans; } int main() { LL p, a…
题目:http://poj.org/problem?id=1995 题目解析:求(A1B1+A2B2+ ... +AHBH)mod M. 大水题. #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <math.h> using namespace std; int n,mod,sum; int main() { ],b[…