1.spark核心RDD特点】的更多相关文章

本文目的     最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken).感觉需要记录点什么,才对得起自己.下面的内容主要是关于Spark核心-RDD的相关的使用经验和原理介绍,作为个人备忘,也希望对读者有用.     为什么选择Spark     原因如下 代码复用:使用Scala高级语言操作Spark,灵活方便,面向对象,函数编程的语言特性可以全部拿来.Scala基本上可以无缝集成java及其相关库.最重要的是,可以封装组件,沉淀工作,提高工作效率…
1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2:RDD的属性: a.一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个…
Spark中最核心的概念为RDD(Resilient Distributed DataSets)中文为:弹性分布式数据集,RDD为对分布式内存对象的 抽象它表示一个被分区不可变且能并行操作的数据集:RDD为可序列化的.可缓存到内存对RDD进行操作过后还可以存到内存中,下次操作直接把内存中RDD作为输入,避免了Hadoop MapReduce的大IO操作: RDD生成 Spark所要处理的任何数据都是存储在RDD之中,目前两种方式可以生成一个RDD: 1.从RDD进行转换操作 2.使用外部存储系统…
https://blog.csdn.net/jiangpeng59/article/details/52538254 为什么单独讲解combineByKey? 因为combineByKey是Spark中一个比较核心的高级函数,其他一些高阶键值对函数底层都是用它实现的.诸如 groupByKey,reduceByKey等等 如下给出combineByKey的定义,其他的细节暂时忽略(1.6.0版的函数名更新为combineByKeyWithClassTag)   def combineByKey[…
RDD(Resilient Distributed Dataset) Spark源码:https://github.com/apache/spark   abstract class RDD[T: ClassTag](     @transient private var _sc: SparkContext,     @transient private var deps: Seq[Dependency[_]]   ) extends Serializable with Logging    …
Spark的核心RDD (Resilient Distributed Datasets弹性分布式数据集)  原文链接:http://www.cnblogs.com/yjd_hycf_space/p/7681585.html 铺垫 在hadoop中一个独立的计算,例如在一个迭代过程中,除可复制的文件系统(HDFS)外没有提供其他存储的概念,这就导致在网络上进行数据复制而增加了大量的消耗,而对于两个的MapReduce作业之间数据共享只有一个办法,就是将其写到一个稳定的外部存储系统,如分布式文件系统…
一.Spark RDD容错原理 RDD不同的依赖关系导致Spark对不同的依赖关系有不同的处理方式. 对于宽依赖而言,由于宽依赖实质是指父RDD的一个分区会对应一个子RDD的多个分区,在此情况下出现部分计算结果丢失,单一计算丢失的数据无法达到效果,便采用重新计算该步骤中的所有数据,从而会导致计算数据重复:对于窄依赖而言,由于窄依赖实质是指父RDD的分区最多被一个子RDD使用,在此情况下出现部分计算的错误,由于计算结果的数据只与依赖的父RDD的相关数据有关,所以不需要重新计算所有数据,只重新计算出…
一.RDD(弹性分布式数据集) RDD 是 Spark 最核心的数据结构,RDD(Resilient Distributed Dataset)全称为弹性分布式数据集,是 Spark 对数据的核心抽象,也是最关键的抽象,它实质上是一组分布式的 JVM 不可变对象集合,不可变决定了它是只读的,所以 RDD 在经过变换产生新的 RDD 时,原有 RDD 不会改变. 1.1.设计背景 在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下…
本篇博客中的操作都在 ./bin/pyspark 中执行. RDD,即弹性分布式数据集(Resilient Distributed Dataset),是Spark对数据的核心抽象.RDD是分布式元素的集合,对手的所有操作都可以概括为: 创建RDD 转化已有RDD 调用RDD操作进行求值 在这些操作中,Spark会自动将RDD中的数据分发的集群上,并将操作自动化执行. 每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上. Get Started 用户可以: 读取一个外部数据集 或者使用对…
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 和 An Architecture for Fast and General Data Processing on Large Clusters 这两篇论文. 这篇…