CVPR2020:点云弱监督三维语义分割的多路径区域挖掘 Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Wei_Multi-Path_Region_Mining_for_Weakly_Supervised_3D_Semantic_Segmentat…
CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation  for 3D Semantic Segmentation 摘要 无监督域自适应(UDA)对于解决新域中缺少注释的问题至关重要.有许多多模态数据集,但大多数UDA方法都是单模态的.在这项工作中,我们探索如何从多模态学*,并提出跨模态UDA(xMUDA),其中我们假设存在二维图像和三维点云进行三维语义分割.这是一…
感觉是机器翻译,好多地方不通顺,凑合看看 原文名称:Complex-YOLO: An Euler-Region-Proposal for  Real-time 3D Object Detection on Point Clouds原文地址:http://www.sohu.com/a/285118205_715754代码位置:https://github.com/Mandylove1993/complex-yolo(值得复现一下) 摘要.基于激光雷达的三维目标检测是自动驾驶的必然选择,因为它直接关…
写在前面:一篇魏云超博士的综述论文,完整题目为<基于DCNN的图像语义分割综述>,在这里选择性摘抄和理解,以加深自己印象,同时达到对近年来图像语义分割历史学习和了解的目的,博古才能通今!感兴趣的请根据自己情况找来完整文章阅读学习. 图像的语义分割是计算机视觉中重要的基本问题之一,其目标是对图像的每个像素点进行分类,将图像分割为若干个视觉上有意义的或感兴趣的区域,以利于后续的图像分析和视觉理解.近年来,深度卷积神经网络(Deep Convolutional Neural Network, DCN…
CVPR2020:4D点云语义分割网络(SpSequenceNet) SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Shi_SpSequenceNet_Semantic_Segmentation_Network_on_4D_Point_Clouds_CVPR_2020_paper.pdf 摘要…
多篇开源CVPR 2020 语义分割论文 前言 1. DynamicRouting:针对语义分割的动态路径选择网络 Learning Dynamic Routing for Semantic Segmentation 作者团队:中科院&国科大&西安交大&旷视 论文链接:https://arxiv.org/abs/2003.10401 代码链接:https://github.com/yanwei-li/DynamicRouting 近年来,大量的人工搜索网络被应用于语义分割.然而,以…
TensorFlow中的语义分割套件 描述 该存储库用作语义细分套件.目标是轻松实现,训练和测试新的语义细分模型!完成以下内容: 训练和测试方式 资料扩充 几种最先进的模型.轻松随插即用 能够使用任何数据集 评估包括准确性,召回率,f1得分,平均准确性,每类准确性和平均IoU 绘制损失函数和准确性 欢迎提出任何改进此存储库的建议,包括希望看到的任何新细分模型. 也可以签出Transfer Learning Suite. 引用 如果发现此存储库有用,请考虑使用回购链接将其引用:) 前端 当前提供以…
CVPR2020:三维点云无监督表示学习的全局局部双向推理 Global-Local Bidirectional Reasoning for Unsupervised Representation Learning of 3D Point Clouds 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Rao_Global-Local_Bidirectional_Reasoning_for_Unsupervised_Repr…
CVPR2020论文解读:手绘草图卷积网络语义分割 Sketch GCN: Semantic Sketch Segmentation with Graph Convolutional Networks 论文链接:https://arxiv.org/pdf/2003.00678.pdf 摘要 介绍了一种用于手绘草图语义分割和标注的图形卷积神经网络SketchGCN.我们将输入草图视为二维点集,并将笔划结构信息编码为图形节点/边缘表示.为了预测每个点的标签,我们的SketchGCN使用图卷积和全局分…
深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本文提出了一个新的超级学*框架,用于将三维点云过度分割为超点.本文将此问题转化为学*三维点的局部几何和辐射测量的深度嵌入,从而使物体边界呈现高对比度.嵌入计算使用轻量级神经网络在点的局部邻域上操作.最后,本文将点云过分集描述为一个与学*嵌入相关的图划分问题.这种新方法允许本文在密集的室内数据集(S3D…