区间DP的四边形不等式优化】的更多相关文章

看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1][j]+cost[i][j]);(或者是max(........),本博客以min为例来证明) 熟悉一般区间dp的同学应该清楚我们如果想得到最终的答案,一般要用三层for循环来计算(第一层为长度,第二层枚举起始点,第三层在起始点i和终点j之间寻找最优的分割点).显而易见它的时间复杂度为o(n^3),…
今天上课讲DP,所以我学习了四边形不等式优化(逃 首先我先写出满足四边形不等式优化的方程:…
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重循环跑状态 i,一重循环跑 i 的所有子状态)这样的时间复杂度是O(N^2)而 斜率优化或者四边形不等式优化后的DP 可以将时间复杂度缩减到O(N) O(N^2)可以优化到O(N) ,O(N^3)可以优化到O(N^2),依次类推 斜率优化DP和四边形不等式优化DP主要的原理就是利用斜率或者四边形不等…
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程很容易想出来,dp[i][j] 表示前 j 个数分成 i 组.但是复杂度是三次方的,肯定会超时,就要对其进行优化. 有两种方式,一种是斜率对其进行优化,是一个很简单的斜率优化 dp[i][j] = min{dp[i-1][k] - w[k] + sum[k]*sum[k] - sum[k]*sum[…
四边形不等式 定义:设\(w(x,y)\)是定义在整数集合上的的二元函数,若对于定义域上的任意整数\(a,b,c,d\),在满足\(a\leq b\leq c \leq d\)时,都有\(w(a,d)+w(b,c)\geq w(a,c)+w(b,d)\)成立,则称函数\(w\)满足四边形不等式. 定理1:四边形不等式的等价表达 \(w(x,y)\)是定义在整数集合上的的二元函数,若对于定义域上的任意整数\(a,b\),在满足\(a< b\)时,都有\(w(a,b+1)+w(a+1,b)\geq…
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的区间DP问题 d p[i][j]表示前i个节点,分为j个区间的最优策略值 cost[i][j]为从i到j节点的策略值 所以dp[i][j] = min(dp[k-1][j-1] + cost[k][i] 但是复杂度太高了 可以优化的地方有: cost数组值得求取: 考虑到cost(i,j)=ΣAxAy (i≤…
入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[i][j] = min(dp[i][j],dp[i][k] + dp[k+1][j] + sum[i][j]) 对于第i堆到第j堆合并的花费 他的子问题是第i个的合并顺序 op1:k实际上控制的是第i堆也就是起始堆的合并顺序 因为必须是相邻合并dp[i][i] 先合并dp[i+1][j]最后再来合并…
问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1, t2, …, tn.可以用01串给这些单词编码,即将每个单词与一个01串对应,使得任何一个单词的编码(对应的01串)不是另一个单词编码的前缀,这种编码称为前缀码. 使用前缀码编码一段文字是指将这段文字中的每个单词依次对应到其编码.一段文字经过前缀编码后的长度为: L=a1的编码长度×t1+a2的…
区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n天卖掉i..j货物的收益 dp[begin][end]=max(dp[begin][end-1]+value[end]*(n-len+1) ,dp[begin+1][end]+value[begin]*(n-len+1)); 注意理解 代码 递推形式 #include<bits/stdc++.h>…
二叉搜索树 [四边形不等式优化区间dp] 题目描述 有 \(n\) 个结点,第 \(i\) 个结点的权值为 \(i\) . 你需要对它们进行一些操作并维护一些信息,因此,你需要对它们建立一棵二叉搜索树.在整个操作过程中,第i个点需要被操作 \(x_i\) 次,每次你需要从根结点一路走到第 \(i\) 个点,耗时为经过的结点数.最小化你的总耗时. 输入格式 第一行一个整数 \(n\) ,第二行 \(n\) 个整数 \(x_1\to x_n\). 输出格式 一行一个整数表示答案. 样例 样例输入 5…
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\forall a \le b \le c \le d\)有 \[val(a,d) + val(b,c) \ge val(a,c) + val(b,d)\] 那么我们称函数\(val(i,j)\)满足四边形不等式 一般地,当我们需要证明一个函数\(val(i,j)\)满足四边形不等式时,只需证对于\(\fo…
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分. 求出将n堆石子合并成一堆的最小得分和最大得分以及相应的合并方案. 设m[i,j]表示合并d[i..j]所得到的最小得分. 状态转移方程: 总的时间复杂度为O(n3). [优化方案] 四边形不等式: m[i,j]满足四边形不等式 令s[i,j]=max{k | m[…
题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不了的,需要优化 注意:dp的转移如下:dp[i][j]=min(dp[i][k]+dp[k+1][j]+sum(i,j)),其中sum(i,j)表示i到j的价值和,满足区间单调性 因此dp[i][j]也满足区间单调性,可以用四边形不等式优化 我们令s[i][j]等于让dp[i][j]取最小值的那个K…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 N堆石子摆成一个环.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价.   例如: 1 2 3 4,有不少合并方法 1 2 3…
3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1].问安排怎样的合并顺序,能够使得总合并代价达到最小. 输入描述 Input Description 第一行一个整数n(n<=3000) 第二行n个整数w1,w2-wn (wi <= 3000) 输出描述 Output…
记录一下,以免忘了 对于一个形如 \[dp[i][j]=min(dp[i][k]+dp[k][j]+w[i][j])\] 的转移方程(注意取最大值时不一定满足四边形不等式) 定理1 若对于\(a \leq b\leq c \leq d\)且\(w_{b,c}\leq w_{a,d}\) 那么我们称\(w\)关于区间包含关系单调 定理2 若对于\(a \leq b\leq c \leq d\)且\(w_{a,c}+w_{b,d}\leq w_{b,c}+w_{a,d}\) 则称\(w\)满足四边形…
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary targets were the railroads. A highl…
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond       题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1].问安排怎样的合并顺序,能够使得总合并代价达到最小. 输入描述 Input Descrip…
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i,j)\) 暴力显然不太行 不过暴力枚举决策的话 可以预处理前缀和线性推出. 显然想要优化决策的话第一步就需要O(1)求出\(cost(i,j)\) 经过画图 可以发现预处理出\(g[i][j]\)表示从\((1,1)\)到\((i,j)\)这个矩形中的点值和 和 \(sum_i\)表示\((1,1…
设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1].x - p[i].x } 然后用四边形不等式优化之.. #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <map> #d…
d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费 则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) } 其中w(i, j)的值是可以预处理出来的. 下面是四边形不等式优化的代码: #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> using namespace std; + ; + ; const int…
#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<cmath> using namespace std; #define Maxn 1010 #define INF 0xfffffff *Maxn],sum[*Maxn]; *Maxn][*M…
Problem Description Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if…
在动态规划中,经常遇到形如下式的状态转移方程: m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(i≤k≤j)(min也可以改为max) 上述的m(i,j)表示区间[i,j]上的某个最优值.w(i,j)表示在转移时需要额外付出的代价.该方程的时间复杂度为O(N3) 下面我们通过四边形不等式来优化上述方程,首先介绍什么是“区间包含的单调性”和“四边形不等式” 1.区间包含的单调性:如果对于 i≤i'<j≤j',有 w(i',j)≤w(i,j'),那么说明w具有区间包含的单调性.…
貌似$BZOJ$上并没有这个题... 是嫌这个题水了么... 还是要氪金权限号??? 这里附上洛谷的题面:洛谷P4767 [IOI2000]邮局 题目描述 高速公路旁边有一些村庄.高速公路表示为整数轴,每个村庄的位置用单个整数坐标标识.没有两个在同样地方的村庄.两个位置之间的距离是其整数坐标差的绝对值. 邮局将建在一些,但不一定是所有的村庄中.为了建立邮局,应选择他们建造的位置,使每个村庄与其最近的邮局之间的距离总和最小. 你要编写一个程序,已知村庄的位置和邮局的数量,计算每个村庄和最近的邮局之…
链接 https://www.luogu.org/problemnew/show/P1880 思路 总之就是很牛逼的四边形不等式优化 复杂度\(O(n^2)\) 代码 #include <iostream> #include <cstdio> #include <cstring> using namespace std; const int N=207; int read() { int x=0,f=1;char s=getchar(); for(;s>'9'||…
http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_nTDz7pP9xCeHnd062vNwVT830z4_aQoZxsCcRtac6CLzbPYLNImi5QAjF2k9ydjqdFf7wlh29GJffeyG8rUh-Y1c3xWRi0AKFNKSrtj3ZY7mtdp9n5W7M6BBjoINA-DdplWWEPSK#1 dp[i][j]表示第…
题意:给n堆石子,每次合并相邻两堆,花费是这两堆的石子个数之和(1和n相邻),求全部合并,最小总花费 若不要求相邻,可以贪心地合并最小的两堆.然而要求相邻就有反例 为了方便,我们可以把n个数再复制一遍,放到第n个数后,就不用考虑环的问题了 我们设f[i][j]为合并区间[i,j]所需要的最小花费,然后就可以得到 f[i][j]=min{f[i][k]+f[k+1][j]+sum[i,j]} ,i<=k<=j,i<j; f[i][i]=0 然后就可以用$O(n^3)$的复杂度递推啦.此题结…
P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef double db; template<typename T>inline :;} template<typename T>i…
题目描述 一些村庄建在一条笔直的高速公路边上,我们用一条坐标轴来描述这条公路,每个村庄的坐标都是整数,没有两个村庄的坐标相同.两个村庄的距离定义为坐标之差的绝对值.我们需要在某些村庄建立邮局.使每个村庄使用与它距离最近的邮局,建立邮局的原则是:所有村庄到各自使用的邮局的距离总和最小.数据规模:1<=村庄数<=1600, 1<=邮局数<=200, 1<=村庄坐标<=maxlongint 输入 行第一行:n m {表示有n个村庄,建立m个邮局} 第二行:a1 a2 a3 .…