The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test cases. The first line of input is an integer T ≍ 2000 indicating the number…
Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test cases. Th…
Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test cases. Th…
题意:求乘法逆元最小正正数解 思路:a*x≡1(mod m),则称x 是 a 关于 m 的乘法逆元,可以通过解a*x + m*y = 1解得x.那么通过EXGcd得到特解x1,最小正解x1 = x1 % m,如果x1 <=0,x1 += m,注意m是负数时取绝对值,因为是正解,所以不能用(x1%m+m)%m. 代码: #include<iostream> #include<cstdio> #include<cstring> #include<cmath>…
点我看题目 题意 : 这个题是求逆元的,怎么说呢,题目看着很别扭....就是给你a和m,让你求一个最小的x满足a-1≡x (mod m).或者ax≡1 (mod m).通俗点说呢,就是找一个最小的x,他满足的条件的是a*x取余m等于1. 思路 :这个题反正数据不是很大,枚举就行了,因为维基百科中说的,两个数必须是互质的,所以判断一下,还有这个题特别逗的是m是1的时候x肯定也是1,我觉得任何一个数取余1都应该是0,可是这里显然不是这样的.这个题还可以用扩展的欧几里德算法,也可以做. #includ…
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712 The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test cases.…
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3609 Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is e…
1. 题目描述求乘法逆元. 2. 基本思路利用扩展gcd求逆元,模板题目. 3. 代码 /* 3609 */ #include <iostream> #include <sstream> #include <string> #include <map> #include <queue> #include <set> #include <stack> #include <vector> #include <…
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K * M % N = 1 的最小k, 由这个式子我们可以得到y*N+1=k*M, 我们将这个式子变化一下, k*M+y'*N=1, 求最小的k, 就是求最小乘法逆元啦~ 解这个式子我们直接用exgcd()就好啦~ 代码: #include <bits/stdc++.h> using namespa…
题 题意 求a关于m的乘法逆元 分析 a x ≡ 1 (mod m) 等价于 ax+my=1 求x的最小正数(不能是0,我就WA在这里了). 当m=1时,或者 gcd(a,m)!=1 时x不存在. 所以用扩展gcd就可以求了. 代码 #include<cstdio> #define ll long long ll exgcd(ll a,ll b,ll &x,ll &y) { if(b==0) { x=1; y=0; return a; } ll r=exgcd(b,a%b,y,…