R语言-时间序列】的更多相关文章

时间序列:可以用来预测未来的参数, 1.生成时间序列对象 sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20, 22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35) # 1.生成时序对象 tsales <- ts(sales,start = c(2003,1),frequency = 12) plot(tsales) # 2.获得对象信息 start(tsales) end(tsales)…
1.时间序列图 plot()函数 > air<-read.csv("openair.csv") > plot(air$nox~as.Date(air$date,"%d/%m/%Y %H:%M"), #把年月日时分秒转换成日期格式 + type="l", + xlab="Time", ylab="Concentration (ppb)", + main="Time trend of…
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Long-term trend) : 时间序列可能相当稳定或随时间呈现某种趋势. 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function). 2.季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列…
R语言服务器程序 Rserve详解 http://blog.fens.me/r-rserve-server/ Rserve的R语言客户端RSclient https://blog.csdn.net/u011955252/article/details/65442783 http://blog.fens.me/series-r/ R的极客理想系列文章 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域…
时序分析会用到的函数 函数 程序包 用途 ts() stats 生成时序对象 plot() graphics 画出时间序列的折线图 start() stats 返回时间序列的开始时间 end() stats 返回时间序列的结束时间 frequency() stats 返回时间序列中时间点的个数 window() stats 对时序对象取子集 ma() forecast 拟合一个简单的移动平均模型 stl() stats 用LOESS光滑将时序分解为季节项.趋势项和随机项 monthplot()…
什么是分位数回归 分位数回归(Quantile Regression)是计量经济学的研究前沿方向之一,它利用解释变量的多个分位数(例如四分位.十分位.百分位等)来得到被解释变量的条件分布的相应的分位数方程. 与传统的OLS只得到均值方程相比,分位数回归可以更详细地描述变量的统计分布.它是给定回归变量X,估计响应变量Y条件分位数的一个基本方法:它不仅可以度量回归变量在分布中心的影响,而且还可以度量在分布上尾和下尾的影响,因此较之经典的最小二乘回归具有独特的优势.众所周知,经典的最小二乘回归是针对因…
在折腾完爬虫还有一些感兴趣的内容后,我最近在看用R语言进行简单机器学习的知识,主要参考了<机器学习-实用案例解析>这本书. 这本书是目前市面少有的,纯粹以R语言为基础讲解的机器学习知识,书中涉及11个案例.分12章.作者备注以及代码部分都讲得比较深.不过或许因为出书较早,在数据处理方面,他使用更多的是plyr包,而我用下来,dplyr包效果更好.所以许多涉及数据处理的代码,其实可以用更简洁的方法重写.但是思路却是实打实的精华. 我之前在某长途动车上啃完了前三章,两个案例.但越往后读,越觉得后面…
入门书籍:R语言实战 进度:1-4章 摘要: 1)实用的包 forecast:用于做时间序列预测的,有auto.arima函数 RODBC:可以用来读取excel文件.但据说R对csv格式适应更加良好,相应的导入导出均较为方便(read.table, write等) reshape:目前用到rename函数,可以方便的对数据变量重命名 fCalendar:在日期输入处提及,据说对日期运算有奇效,但无具体示例.同理如lubridate sqldf:在数据选取处提及,可代替subset以及各种whe…
本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 ================================================================================================================================================== 本章讨论的图形,主要用于分析数据前,对数据的初步掌握.想要对数据有一个初步的印象,最好的方式就是观察它,也就是将数据可视化.在这个过程中,我们…
Twritters的异常检测算法(Anomaly Detection)做的比较好,Seasonal Hybrid ESD算法是先用STL把序列分解,考察残差项.假定这一项符合正态分布,然后就可以用Generalized ESD提取离群点. 目标是检测出时间序列数据集的异常点,如图所示,蓝色线是时间序列数据集,红色是圈是异常点. R语言实现如下,一些依赖包需要install.packages("")或者手动在cran社区下载(注意依赖包的下载).本人github下载源码. 1 主函数是,…