SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习.分类和预测(有时也叫回归)的一种方法,能解决神经网络不能解决的过学习问题.作者以为,类似的根据样本进行学习的方法还有基于案例的推理(Case-Based Reasoning),决策树归纳算法C4.5等,以后将详细阐述这两种方法. (2)过学习问题:训练误差过小导致推广能力下降,即真实风险的增加. (…
前言 本文讲解如何使用R语言中e1071包中的SVM函数进行分类操作,并以一个关于鸢尾花分类的实例演示具体分类步骤. 分析总体流程 1. 载入并了解数据集:2. 对数据集进行训练并生成模型:3. 在此模型之上调用测试数据集进行分类测试:4. 查看分类结果:5. 进行各种参数的调试并重复2-4直至分类的结果让人满意为止. 参数调整策略 综合来说,主要有以下四个方面需要调整: 1. 选择合适的核函数:2. 调整误分点容忍度参数cost:3. 调整各核函数的参数:4. 调整各样本的权重. 其中,对于特…
此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的约翰·普莱特(John Platt)发明于1998年,目前被广泛使用于SVM的训练过程中,并在通行的SVM库libsvm中得到实现. 1998年,SMO算法发表在SVM研究领域内引起了轰动,因为先前可用的SVM训练方法必须使用复杂的方法,并需要昂贵的第三方二次规划工具.而SMO算法较好地避免了这一问…
与逻辑回归和神经网络相比,支持向量机或者简称 SVM,更为强大. 人们有时将支持向量机看作是大间距分类器. 这是我的支持向量机模型代价函数 这样将得到一个更好的决策边界 理解支持向量机模型的做法,即努力将正样本和负用最大间距分开. 实际上应用支持向量机的时候, 当…
SVM: 1. 线性与非线性 核函数: 2. 与神经网络关系 置信区间结构: 3. 训练方法: 4.SVM light,LS-SVM: 5. VC维 u-SVC 与 c-SVC 区别? 除参数不同外,两者基本一样. c-SVC  c∈(0,∞) u-SVC  c∈[0,1] c是一个很好的特征,它与支持向量的比率和训练误差的比率 相关. SVM求解QR问题中,变量维数=训练样本个数.从而使其中矩阵元素的个数 是 训练样本个数的平方. SVM标准算法中,需要求解复杂的QP问题,理论上获全局最优解,…
支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classification)的模式识别应用中. 支持向量机的最大特点是既能够最小化经验损失(也叫做经验风险.或者经验误差),同时又能够最大化几何间距(分类器的置信度),因此SVM又被称为最大边缘区(间距)的分类器. 根据具体应用场景的不同,支持向量机可以分为线性可分SVM.线性SVM和带有核函数的SVM.最终的结果都是得…
1. 了解SVM 1. Logistic regression 与SVM超平面 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类.如果用x表示数据点,用y表示类别(y可以取或者-1,分别代表两个不同的类),一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane),这个超平面的方程可以表示为( $W^T$中的T代表转置): $W^Tx+b=0$ 这个可以说是我们熟悉的logistic regression的变形. Logistic…
12.1  优化目标 12.2  大边界的直观理解 12.3  数学背后的大边界分类(可选) 12.4  核函数 1 12.5  核函数 2 12.6  使用支持向量机 12.1  优化目标 到目前为止,你已经见过一系列不同的学习算法.在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法 A 还是学习算法 B,而更重要的是, 应用这些算法时,所创建的大量数据在应用这些算法时,表现情况通常依赖于你的水平.比 如:你为学习算法所设计的特征量的选择,以及如何选择正则化参数,…
1. 优化目标 在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法A还是学习算法B,而更重要的是,应用这些算法时,所创建的大量数据在应用这些算法时,表现情况通常依赖于你的水平.比如:你为学习算法所设计的 特征量的选择,以及如何选择正则化参数,诸如此类的事.还有一个更加强大的算法广泛的应用于工业界和学术界,它被称为支持向量机(Support Vector Machine).与逻辑回归和神经网络相比,支持向量机,或者简称SVM,在学习复杂的非线性方程时提供了一种更为清晰…
1. 了解SVM 1. Logistic regression回顾 Logistic regression目的是从特征中学习出一个0/1二分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷.因此,使用logistic function(或称作sigmoid function)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率. 假设函数  其中$x$是$n$维特征向量,函数$g$就是logistic function.     而的图像是   可以…