树莓派是国内比较流行的一款卡片式计算机,但是受限于其硬件配置,用树莓派玩深度学习似乎有些艰难.最近OPENAI为嵌入式设备推出了一款AI框架Tengine,其对于配置的要求相比传统框架降低了很多,我尝试着在树莓派上进行了搭建并成功运行了Mobilenet-SSD. Tengine简介 OAID/Tengine|github Tengine 是OPEN AI LAB 为嵌入式设备开发的一个轻量级.高性能并且模块化的引擎. Tengine在嵌入式设备上支持CPU,GPU,DLA/NPU,DSP异构计…
用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈 深度学习已变得无处不在,不可或缺.这场革命的一部分是由可扩展的深度学习系统推动的,如滕索弗洛.MXNet.咖啡和皮托奇.大多数现有系统针对范围狭窄的服务器级 GPU 进行了优化,需要在其它平台,如移动电话.物联网设备和专用加速器(FPGA.ASIC)上部署大量精力.随着深度学习框架和硬件后端数量的增加,建议建立一个统一的中间表示 (IR) 堆栈,以缩小以生产力为中心的深度学习框架与面向性能或效率的硬件后端之间的差距. TVM 是一个新…
从零开始在ubuntu上配置深度学习开发环境 昨天一不小心把原来配置好的台式机的开发环境破坏了,调了半天没有调回来,索性就重装一次ubuntu系统.这篇文章主要记录一个简单的.‘傻瓜式’教程. 一.Ubuntu系统重装 可以参照以下链接的教程来准备启动盘,然后安装系统,地址为在这里. 二.安装Firefox浏览器 在国内的官网上面下载安装火狐浏览器.首先下载tar文件,如下图: 将压缩包内的文件解压到某一路径之内,博主选择的是解压到:/usr/share/路径下,因为这是ubuntu安装软件的默…
github上热门深度学习项目 项目名 Stars 描述 TensorFlow 29622 使用数据流图进行可扩展机器学习的计算. Caffe 11799 Caffe:深度学习的快速开放框架. [Neural Style](https://github.com/jcjohnson/neural-style) 10148 火炬实现神经风格算法. Deep Dream 9042 深梦. Keras 7502 适用于Python的深度学习库.Convnets,递归神经网络等等.在Theano和Tens…
前面我们学习过深度学习中用于加速网络训练.提升网络泛化能力的两种策略:Batch Normalization(Batch Normalization)和Layer Normalization(LN).今天讨论另一种与它们类似的策略:Weight Normalization(Weight Normalization).Weight Normalization是Batch Normalization的一种变体,与Batch Normalization最大不同点:对神经网络的权值向量W进行参数重写Re…
从事深度学习的研究者都知道,深度学习代码需要设计海量的数据,需要很大很大很大(重要的事情说三遍)的计算量,以至于CPU算不过来,需要通过GPU帮忙,但这必不意味着CPU的性能没GPU强,CPU是那种综合性的,GPU是专门用来做图像渲染的,这我们大家都知道,做图像矩阵的计算GPU更加在行,应该我们一般把深度学习程序让GPU来计算,事实也证明GPU的计算速度比CPU块,但是(但是前面的话都是废话)我们穷,买不起呀,一块1080Ti现在也要3500左右,2080Ti要9000左右,具体价格还要看显存大…
  这篇博客主要是整理了PointNet提出者祁芮中台介绍PointNet.PointNet++.Frustum PointNets的PPT内容,内容包括如何将点云进行深度学习,如何设计新型的网络架构,如何将架构应用的3D场景理解. 作者主页:https://stanford.edu/~rqi/ B站视频:https://www.bilibili.com/s/video/BV1HE411g7tA PPT下载链接:https://pan.baidu.com/s/105MRbBmCv4Tj6GYTM…
from:https://www.zhihu.com/question/49346370   Harick     梯度爆炸了吧. 我的解决办法一般以下几条:1.数据归一化(减均值,除方差,或者加入normalization,例如BN.L2 norm等):2.更换参数初始化方法(对于CNN,一般用xavier或者msra的初始化方法):3.减小学习率.减小batch size:4.加入gradient clipping: 发布于 2016-09-04   仁孟     说明训练不收敛了, 学习率…
Chainer是一个专门为高效研究和开发深度学习算法而设计的开源框架. 这篇博文会通过一些例子简要地介绍一下Chainer,同时把它与其他一些框架做比较,比如Caffe.Theano.Torch和Tensorflow. 大多数现有的深度学习框架是在模型训练之前构建计算图. 这种方法是相当简单明了的,特别是对于结构固定且分层的神经网络(比如卷积神经网络)的实现. 然而,现在的复杂神经网络(比如循环神经网络或随机神经网络)带来了新的性能改进和新的应用.虽然现有的框架可以用于实现这些复杂神经网络,但是…
前言 在训练深度学习模型时,常想一窥网络结构中的attention层权重分布,观察序列输入的哪些词或者词组合是网络比较care的.在小论文中主要研究了关于词性POS对输入序列的注意力机制.同时对比实验采取的是words的self-attention机制. 效果 下图主要包含两列:word_attention是self-attention机制的模型训练结果,POS_attention是词性模型的训练结果. 可以看出,相对于word_attention,POS的注意力机制不仅能够捕捉到评价的aspe…
http://www.mooc.ai/course/353/learn?lessonid=2289&groupId=0#lesson/2289 1.AlexNet, VGGNet, GoogleNet, ResNet https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html 1.1 AlexNet: 图像输入224*224*3.11*11滤波…
1.在PyCharm里配置部署环境 打开PyCharmTools > Deployment > Configuration, 新建一个SFTP服务器,名字自己取: 输入如下图配置,注意这里的端口是你刚刚设置的映射到容器22端口的宿主机中的端口,这里的Root Path设置一个远程虚拟机服务器里的路径:  配置完点击Test SFTP connection,如果成功就恭喜你,可以进行下一步了. 最后在Mappings中配置路径,这里的路径是你本地存放代码的路径,与刚刚配置的Root Path相互…
答案:树莓派1和树莓派zero是不支持的,原因是.net需要arm v7 详情看这里 可以用 cat /proc/cpuinfo | grep 'model name' |uniq 看一下cpu…
anaconda3.5.2.0----python3.6: conda  install   tensorflow-gpu  -y --prefix  /media/wkr/diskHgst/ubun/env/anaconda3520 conda  install  pytorch  cuda92  -c soumith  -y   --prefix  /media/wkr/diskHgst/ubun/env/anaconda3520 conda  install   -c caffe2 caf…
两派 1. 新的卷机计算方法 这种是直接提出新的卷机计算方式,从而减少参数,达到压缩模型的效果,例如SqueezedNet,mobileNet SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size 修改网络结构,类似于mobileNet MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Appli…
出现Nan : 说法1: 说法2:说法3:     震荡 : 分析原因:  1:训练的batch_size太小 1.  当数据量足够大的时候可以适当的减小batch_size,由于数据量太大,内存不够.但盲目减少会导致无法收敛,batch_size=1时为在线学习. 2.  batch的选择,首先决定的是下降方向,如果数据集比较小,则完全可以采用全数据集的形式.这样做的好处有两点, 1)全数据集的方向能够更好的代表样本总体,确定其极值所在. 2)由于不同权重的梯度值差别巨大,因此选取一个全局的学…
训练网络时,通常先对网络的初始权值按照某种分布进行初始化,如:高斯分布.初始化权值操作对最终网络的性能影响比较大,合适的网络初始权值能够使得损失函数在训练过程中的收敛速度更快,从而获得更好的优化结果.但是按照某类分布随机初始化网络权值时,存在一些不确定因素,并不能保证每一次初始化操作都能使得网络的初始权值处在一个合适的状态.不恰当的初始权值可能使得网络的损失函数在训练过程中陷入局部最小值,达不到全局最优的状态.因此,如何消除这种不确定性,是训练深度网络是必须解决的一个问题. momentum 动…
目前在计算机视觉中应用的数组维度最多有四维,可以表示为 (Batch_size, Row, Column, Channel) 以下将要从二维数组到四维数组进行代码的简单说明: Tips: 1) 在numpy中所有的index都是从0开始. 2) axis = 0 对Cloumn(Width)操作: axis = 1 对Row(Height)操作: axis = 2 or -1 对Channel(Depth)操作 1. 二维数组 (Row, Column) import numpy as np #…
http://ethereon.github.io/netscope/#/editor 网址:http://ethereon.github.io/netscope/#/editor 将.prototxt中的内容输入到文本框中,然后按shift+enter键,就会得到可视化网络…
之前一直在CPU上跑深度学习,由于做的是NLP方向所以也能勉强忍受.最近在做图像的时候,实在是扛不住了...还好领导们的支持买个虚拟机先体验下.由于刚买的机器,环境都得自己摸索,瞎搞过很多次,也走过很多弯路,所以我就记录下从裸机安装深度学习环境的正确过程.(全程root用户哦!) 裸机简介 服务器是阿里云的CentOS7.4,默认的时候选择的CUDA驱动选错了,1.5以上的tensorflow都应该选择CUDA9.0,注意不要太高,也不要太低!TF很挑剔! 先来聊聊裸机里面包含什么有用的东西:…
from:https://www.jiqizhixin.com/articles/2018-08-11-11 可以通过分析流量包来检测TOR流量.这项分析可以在TOR 节点上进行,也可以在客户端和入口节点之间进行.分析是在单个数据包流上完成的.每个数据包流构成一个元组,这个元组包括源地址.源端口.目标地址和目标端口. 提取不同时间间隔的网络流,并对其进行分析.G.He等人在他们的论文“从TOR加密流量中推断应用类型信息”中提取出突发的流量和方向,以创建HMM(Hidden Markov Mode…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
转载:https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github GitHub 上 57 款最流行的开源深度学习项目 本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名).最后更新:2016.08.09 1.TensorFlow 使用数据流图计算可扩展机器学习问题 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFl…
GitHub 上 57 款最流行的开源深度学习项目[转] 2017-02-19 20:09 334人阅读 评论(0) 收藏 举报 分类: deeplearning(28) from: https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github 本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名).最后更新:2016.08.09 1.TensorFlow Star…
原文:https://github.com/aymericdamien/TopDeepLearning 项目名称 Stars 项目介绍 TensorFlow 29622 使用数据流图计算可扩展机器学习问题. Caffe 11799 Caffe是一个高效的开源深度学习框架. Neural Style 10148 Torch实现的神经网络算法. Deep Dream 9042 Deep Dream,一款图像识别工具. Keras 7502 一款Python实现的深度学习库,包括卷积神经网络.递归神经…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景…
在计算机视觉和机器学习方向有一个特别好用但是比较低调的库,也就是dlib,与opencv相比其包含了很多最新的算法,尤其是深度学习方面的,因此很有必要学习一下.恰好最近换了一台笔记本,内含一块GTX1060的显卡,可以用来更快地跑深度学习算法.以前用公司HP的工作站配置过dlib,GPU是Quadro K420,用dlib自带的人脸识别算法(ResNet)测试过,相比较1060的速度确实要快上很多.dlib.cuda和cudnn的版本经常会更新,每次重新配置环境会遇到一些问题,在这里记下来吧.…
本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完全在另一个量级上. 而 GPU 的选择,会在根本上决定你的深度学习体验.那么,对于一名 DL 开发者,应该怎么选择合适的 GPU 呢?这篇文章将深入讨论这个问题,聊聊有无必要入手英特尔协处理器 Xeon Phi,并将各主流显卡的性能.性价比制成一目了然的对比图,供大家参考. 先来谈谈选择 GPU 对…