目录 感受野 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 小卷积核的优势 参考资料 感受野 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上的像素点在输入图片上映射的区域大小.再通俗点的解释是,特征图上的一个点对应输入图上的区域,如下图所示: 返回目录 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 像LeNet.AlexNet网络,都是用了较大的卷积核,目的是提取出输入图像更大邻域范围的信息,一般是卷积与池化操…
目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减少了网络参数. ③减少了计算量 在<Rethinking the Inception Architecture for Computer Vision>中作者还想把小卷积核继续拆解,从而进一步增强前面的优势 返回目录 举例 一个3*3的卷积可以拆解为:一个3*1的卷积再串联一个1*3的卷积,实验证…
目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深度学习面试题26:GoogLeNet(Inception V2)>中对前两个Inception版本做了介绍,下面主要阐述V3版本的创新点 使用非对称卷积分解大filters InceptionV3中在网络较深的位置使用了非对称卷积,他的好处是在不降低模型效果的前提下,缩减模型的参数规模,在<深度学…
目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是Hinton,于2012年发表论文. AlexNet有60 million个参数和65000个 神经元,五层卷积,三层全连接网络,最终的输出层是1000通道的softmax.AlexNet利用了两块GPU进行计算,大大提高了运算效率,并且在ILSVRC-2012竞赛中获得了top-5测试的15.3%…
目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separable_conv2d( inputs, depth(64), [7, 7], depth_multiplier=depthwise_multiplier, stride=2, padding='SAME', weights_initializer=trunc_normal(1.0), scope=en…
目录 简介 网络结构 对应代码 网络说明 参考资料 简介 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名.VGG获得了第二名,这两类模型结构的共同特点是层次更深了.VGG继承了LeNet以及AlexNet的一些框架结构,而GoogLeNet则做了更加大胆的网络结构尝试,虽然深度只有22层,但大小却比AlexNet和VGG小很多,GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VG…
目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于conv2d在每一深度上卷积,然后求和,depthwise_conv2d没有求和这一步,对应代码为: import tensorflow as tf # [batch, in_height, in_width, in_channels] input =tf.reshape( tf.constant([…
目录 VGGNet网络结构 论文中还讨论了其他结构 参考资料 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名. VGGNet探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了16~19层深的卷积神经网络,证明了增加网络的深度能够在一定程度上影响网络最终的性能…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.11向量化 向量化是消除代码中显示for循环语句的艺术,在训练大数据集时,深度学习算法才变得高效,所以代码运行的非常快十分重要.所以在深度学习领域中将大数据集进行向量化操作变得十分重要. 对于非向量化数据的计算,我们会使用循环去遍历整个数据集计算对应项的乘积.例如我们要计算一个数据样本,其中w和b都是一个n维向量,计算式子:\(Z=W^{T}+b\)那么我们的式子会写为: z=0 for i in range(n-x) z+=w[i]*…
定义模型两种方法:  1.sequential 类仅用于层的线性堆叠,这是目前最常用的网络架构 2.函数式API,用于层组成的有向无环图,让你可以构建任意形式的架构 from keras import models from keras import layers model = models.Sequential() model.add(layers.Dense(32,activation='relu',input_shape=(784,))) model.add(layers.Dense(1…