BSGS和EXBSGS】的更多相关文章

知识点简单总结--BSGS与EXBSGS BSGS 给出 $ A,B,C,(A,C)=1 $ ,要你求最小的 $ x $ ,使得 $ A^x \equiv B(mod \ C) $ . 在数论题中经常会看见这样的式子,而它的用处确实也不少,例如: 求指标 ...想不到了(被打) 解题思路 众所周知 $ A^{x} \equiv A^{x \ mod \ \phi (C) }(mod \ C) $ 所以考虑暴力枚举就可以. 但是我们显然要考虑一个更快的. 分块就好了. 设块大小 $ m $ ,预处…
\(BSGS\)用于解决这样一类问题: 求解\(A^x ≡B(modP)\)的最小\(x\),其中\(P\)为质数. 这里我们采用分块的方法,把\(x\)分解为\(i *t-b\)(其中\(t\)是分块大小) .根据模意义下逆元的性质,\(x\)的大小一定\(<=phi(p)\)即\(p - 1\),所以经过移项和进行存在性对比,我们就可以\(O(N)\)求出答案. int BSGS (int A, int B, int P) { int t = (int) ceil (sqrt (P)); f…
前置知识 扩展欧几里得,快速幂 都是很基础的东西 扩展欧几里得 说实话这个东西我学了好几遍都没有懂,最近终于搞明白,可以考场现推了,故放到这里来加深印象 翡蜀定理 方程$ax+by=gcd(a,b)$一定有整数解 证明: 因为$gcd(a,b)=gcd(b,a$ $mod$ $b)$ 所以假设我们已经求出来了$bx+(a$ $mod$ $b)y=gcd(b,a$ $mod$ $b)$的一组整数解$(p,q)$ 因为$a$ $mod$ $b=a-(\lfloor \frac{a}{b} \rflo…
也许更好的阅读体验 \(Description\) 给定\(a,b,p\),求一个\(x\)使其满足\(a^x\equiv b\ \left(mod\ p\right)\) \(BSGS\) \(BSGS\)可以解决\(p\)为质数的情况 令 \(m=\lceil \sqrt p\rceil\) 令 \(x=i\cdot m-k\) 有 \(a^{i\cdot m-k} \equiv b\ (mod\ p)\) 两边同乘 \(a^k\) 得 \(a^{i\cdot m}\equiv b\cdot…
一.离散对数 给定 \(a,b,m\),存在一个 \(x\),使得 \(\displaystyle a^x\equiv b\pmod m\) 则称 \(x\) 为 \(b\) 在模 \(m\) 意义下以 \(a\) 为底的 离散对数. 二.BSGS 离散对数:求解关于 \(x\) 的方程 \(a^x\equiv b\pmod m\). 基本思想:(假设 \(\gcd(a,m)=1\),那么 \(a\) 在模 \(m\) 意义下存在逆元) 考虑类似分块的一个想法.首先设定一个常量 \(t\). 设…
BSGS 引入 求解关于\(X\)的方程, \[A^X\equiv B \pmod P \] 其中\(Gcd(A,P)=1\) 求解 我们令\(X=i*\sqrt{P}-j\),其中\(0<=i,j<=\sqrt{P}\) 则原式可以变为: \[A^X\equiv B \pmod P \] \[A^{i*\sqrt{P}-j}\equiv B \pmod P \] 由于\(Gcd(A,P)=1\),则可以恒等变化为: \[A^{i*\sqrt{P}}\equiv B*A^j \pmod P \…
我的 BSGS 和各位犇犇的差不多,但是不需要求逆元 Luogu [ TJOI2007 ] 可爱的质数 原题展现 题目描述 给定一个质数 \(p\),以及一个整数 \(b\),一个整数 \(n\),现在要求你计算一个最小的非负整数 \(l\),满足 \(b^l \equiv n \pmod p\). 输入格式 仅一行,有 \(3\) 个整数,依次代表 \(p, b, n\). 输出格式 仅一行,如果有 \(l\) 满足该要求,输出最小的 \(l\),否则输出 no solution. 样例 #1…
大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A.C互质的时候, 叫他BSGS: A一定存在mod C意义下的逆元,所以,A^k也存在. 注意到,A^(fai(c)) = 1 (mod c)  ......................(fai(c)表示c的欧拉函数值) 所以,A^(fai(c)+1) = A (mod C) 就重新回去了. 所…
BSGS和EXBSGS是OI中用于解决A^xΞB(mod C)的常用算法. 1.BSGS BSGS用于A,C互质的情况. 令m=sqrt(C),此时x可表示为i*m+j. 式中i和j都<=sqrt(C) 原式Ax≡B(mode C) -->Ai*m * Aj≡B(mode C) 枚举Ai*m,此时Ai*m相当于系数.//O(sqrt(C)) 现在我们可用exgcd/费马小定理求逆元算出Aj%C的值 通过预处理将A1~m存入map/哈希表.//O(1)//用map会多一个log 解决了. 时间复…
Day -1 2019.1.2 初步计划: 0x60 图论 std 洛谷提高剩余练习 NOIP2018遗留题解 洛谷省选基础练习 数学: 1.数论 2.组合数学(练习:莫比乌斯反演) 3.概率(练习:概率期望) 4.计算几何 5.函数(CF1096G题解) 洛谷省选高级数据结构练习: 1.单调队列 2.点分治 3.主席树 4.平衡树 5.树链剖分 6.动态树 7.树套树 8.莫队算法 9.分块 Day 0 2019.1.3 复习最短路+最小生成树 std×10 明天计划:树的直径与最近共同祖先+…