(高考压轴题)证明以下命题:(1)对任意正整数$a$都存在正整数$b,c(b<c)$,使得$a^2,b^2,c^2$成等差数列.(2)存在无穷多个互不相似的三角形$\Delta_n$,其边长$a_n,b_n,c_n$为正整数,且$a_n^2,b_n^2,c_n^2$成等差数列 解答:(1)$2b^2=a^2+c^2$令$x=\dfrac{c}{a},y=\dfrac{b}{a}$ 得$x^2-2y^2=-1$得该不定方程的解$(7,5)$故对任意正整数$a$存在正整数$b=7a,c=5a$使得$…