[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) Input 第一行n,(1<=n<=500000)下面每行一个整数,其中第i行是ai.(0<=ai<=1000000000) Output n行,第i行表示对于i,得到的p Sample I…
给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单独做.现在假设j都在i左边,则$ p_{i} = max \{ a_{j}-a_{i}+ \sqrt{i-j} \} = max \{ a_{j}+ \sqrt{i-j} \} - a_i$.带根号,不易斜率优化,考虑证决策单调性. 假设最优决策为j,j之前的任意决策称之为$j'$,只与$j$有关的项令之…
传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\)分开做. 当\(i>j\)时,\(f_i = \max\limits_{j=1}^{i-1}(a_j + \sqrt{i-j})\).注意到这是一个典型的\(f_i = \max\limits_{j=1}^{i-1}f_j + w(i,j)\)的形式,考虑决策单调性.不难证明\(\sqrt{x + 1}…
BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) Input 第一行n,(1<=n<=500000) 下面每行一个整数,其中第i行是ai.(0<=ai<=1000000000) Output n行,第i行表示对于i,得到的p…
好久没写过决策单调性了. 这题其实就是 $p_i=\lceil\max\limits_{j}(a_j-a_i+\sqrt{|i-j|})\rceil$. 拆成两边,先只考虑 $j<i$,然后反过来再做一遍. 然后,发现满足决策单调性.怎么发现的呢? 令 $f_j(i)=\sqrt{i-j}$.会发现 $f_{j_1}(i)$ 和 $f_{j_2}(i)$ 至多只有一个交点. 然后,由于这里是小取代大,所以可以用单调队列.然后发现式子里面与 $p_i$ 无关,所以转移可以按任意顺序,那就可以分治.…
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/7258256.html 注释WA???最近似乎总是WA在二分上... 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; ;…
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下面给一张图证明这是满足决策单调性的 把$a_j+sqrt(i-j)$表示在坐标系上 显然$sqrt(i-j)$的增长速度趋缓 曲线$a$被曲线$b$超过后是无法翻身的 对两个方向进行决策单调性分治,取$max$即可 #include<iostream> #include<cstdio>…
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 \[p_i\ge a_j-a_i+\sqrt{|i-j|}\] \[p_i=\max\limits_{j=1}^n\{a_j+\sqrt{|i-j|}\}-a_i\] 绝对值看着很不爽,我们把它拆开 \[p_i=\max(\max_{j=1}^i\{a_j+\sqrt{i-j}\},\max_{j…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的位置优,就会一直更优(因为距离相同地增长,基数大的增长慢),所以有决策单调性. 一开始写了和 bzoj 4709 一样的实现,就是使得队列里相邻两个位置的 “后一个位置优于前一个位置的时间” 是单调递增的.但是却 TLE .不知道为什么. #include<cstdio> #include<…
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqrt{|i - j|} - h_i\)的最大值 就可以设\(f[i]\)表示对\(i\)最大的该式的值 绝对值通常要去掉,一般可以通过方向性,我们只需每次转移时令\(i > j\),正反转移两次即可 现在式子变为 \[f[i] = max\{h_j + \sqrt{i - j}\} - h_i\] 发…
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) Input 第一行n,(1<=n<=500000) 下面每行一个整数,其中第i行是ai.(0<=ai<=1000000000) Output n行,第i行表示对于i,得到的p Sample Input 6 5 3 2 4 2 4 Sample Output 2 3…
每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; ,inf=1e9; int n; ]; void read(int &k) {…
题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) 题解 决策单调性是个好东西 等学会了再滚回来填坑 //minamoto #include<iostream> #include<cstdio> #include<cmath> using namespace std; #define getc() (p1==p2&…
题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = max(max_{j = 1}^i (a_j = \sqrt{i - j}), max_{j = i + 1}^n (a_j + \sqrt{j - i})) - a_i$ 对于后面的一段,我们把序列翻转之后和前一段是等价的. 也就是说,我们现在只需要找到$P_i = max_{j = 1}^i (…
点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt{|i-j|}\)的增长是逐渐变慢的,所以若当前位置\(i\)受\(x\)影响,那么对于任意\(y<x\),\(i\)之后的位置都不可能再受\(y\)影响. 也就可见其具有单调性. 决策单调性 这里的决策单调性我用的是闪指导指导我的分治做法. 我们对于当前区间\([l,r]\),再记录一个决策区间\…
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) 数据范围 洛咕上也没给,我能怎么办啊 非正解做法一:暴力 应该都会吧,\(O(n^2)\)枚举.洛谷上貌似40pts. 非正解做法二:…
即对每个i最大化hj-hi+sqrt(|i-j|).先把绝对值去掉,正反各做一次即可.注意到当x>y时,sqrt(x+1)-sqrt(x)<sqrt(y+1)-sqrt(y),所以若对于i选择j比选择k更优(j>k),对于i+1~n也会是这样,即满足决策单调性(虽然并不能算作dp). 可以这样使用决策单调性优化:维护一个栈,存储当前考虑的这些位置中每个位置向哪个区间转移最优.转移时在栈中二分,然后考虑更新栈,如果新加入的位置向栈顶的整个区间转移都是最优的,直接将栈顶位置弹出,否则二分找一…
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [Done]洛谷P2511 [HAOI2008]木棍分割 [Done]洛谷P4099 [HEOI2013]SAO [Done]NOIAC37 染色 单调队列优化 前置技能:单调队列(经典的问题模型:洛谷P1886 滑动窗口) 用于优化形如\(f_i=\min/\max_{j=l_i}^{i-1}\{g_…
决策单调性: 对于一些dp方程,经过一系列的猜想和证明,可以得出,所有取的最优解的转移点(即决策点)位置是单调递增的. 即:假设f[i]=min(f[j]+b[j]) (j<i) 并且,对于任意f[i]的决策点g[i],总有f[i+1]的决策点g[i+1]>=g[i](或者<=g[i]) 那么,这个方程就具备决策单调性. 这个有什么用吗? 不懂具体优化方法的话确实也没有什么用.可能还是n^2的.只不过范围可能少了一些. 一 经典入门例题: Description: [POI2011]Li…
[bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs(i-j)) Input 第一行n,(1<=n<=500000) 下面每行一个整数,其中第i行是ai.(0<=ai<=1000000000) Output n行,第i行表示对于i,得到的p Sampl…
其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问题:我们列出了一个 \(dp\) 状态转移方程式形如 \(dp_i=\min\limits_{j<i}dp_j+w(j+1,i)\) 或类似的形式,暴力转移时间复杂度 \(\mathcal O(n^2)\) 过不去,但是你发现这里的代价函数 \(w(l,r)\) 有一些比较好的性质,譬如单调性或凹凸…
洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要想点办法,不失一般性也能快捷地判定决策单调. 对于判定决策单调的分析 再补一句决策单调性的概念:状态转移方程形如\(f_i=\min/\max_{j=1}^{i-1} g_j+w_{i,j}\),且记\(f_i\)的最优决策点为\(p_i\)(也就是\(f_i\)从\(g_{p_i}+w_{i,p_…
洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是直接并购,这一块对答案没有任何贡献. 我们先把这些给去掉,具体做法可以是,按高为第一关键字,宽为第二关键字从大到小排序,然后上双指针扫一遍. 于是,剩下的就是一个高度递减.宽度递增的矩形序列.考虑怎样制定它们的并购方案会最优.显然如果要并购,一定要挑序列中的一段区间,这样贡献答案的就只有最左边矩形的…
决策单调性优化dp 专题练习 优化方法总结 一.斜率优化 对于形如 \(dp[i]=dp[j]+(i-j)*(i-j)\)类型的转移方程,维护一个上凸包或者下凸包,找到切点快速求解 技法: 1.单调队列 : 在保证插入和查询的x坐标均具有单调性时可以使用 2.单调栈+二分:保证插入有单调性,不保证查询有单调性 3.分治+ 1 或 2:在每次分治时将\([l,mid]\)这段区间排序后插入,然后更新右区间\([mid+1,r]\)的答案 二.分治.单调队列维护有单调性的转移 (甚至还有分治套分治)…
题目大意:有一个数列,将其分成m段,求最小方差 先弄出n^3的dp,打出决策点,然后发现决策点是单调递增的,决策单调性搞一搞就可以了 #include<bits/stdc++.h> #define ll long long #define maxn 3010 using namespace std; int n,m; int a[maxn],sum[maxn]; double f[maxn][maxn],x; double sqr(double x){return x*x;} void sol…
题意 给一个长度为\(n\)的序列\(a_i\),对于每个\(1 \le i \le n\),找到最小的非负整数\(p\)满足 对于任意的\(j\), \(a_j \le a_i + p - \sqrt{|i-j|}\) 分析 我们正反dp一下. 题解 令\(d(i)\)表示最小的\(p\),则\(d(i) = max(a_j+\sqrt{i-j})-a_i, j < i\). 其实发现这是有决策单调性的.即对于决策\(j\)和\(k(j > k)\),如果\(j\)在\(i\)时比\(k\)…
2739: 最远点 Time Limit: 20 Sec Memory Limit: 256 MB Description 给你一个N个点的凸多边形,求离每一个点最远的点. Input 本题有多组数据,第一行一个数T,表示数据组数. 每组数据第一行一个数N,表示凸多边形点的个数,接下来N对数,依次表示1~N这N个点的坐标,按照逆时针给出. Output 对于每组数据输出N个数,第i个数表示离第i个点最远的点的编号,如果有多个最远点,输出编号最小的. Sample Input 1 4 0 0 1…
题意 有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划分方案. \(n \le 10^5 , 1 \le P \le 10\) 题解 考虑暴力 \(O(n^2)\) dp. \[ dp_i = \min_{j = 0} ^ {i - 1} |sum_j - sum_i - L|^P + dp_j \] 这个方程是具有决策单调性的. 决策单调性是指,对于…
题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. \(2 \le n \le 10^5, 2 \le k \le \min(n, 20), 1 \le a_i \le n\) 题解 \(k\) 比较小,可以先考虑一个暴力 \(dp\) . 令 \(dp_{k, i}\) 为前 \(i\) 个数划分成 \(k\) 段所需要的最小花费. 那么转移如下…
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$表示当前这段序列中数字大小为i的数的个数. 题解: 先考虑暴力DP, f[i][j]表示DP到i位,分为j段的最小代价. 则$f[i][j] = min(f[l - 1][j] + sum[l][i])$,其中sum[l][i]表示区间[l, i]分成一段的代价. 然后可以发现,这是具有决策单调性的…