马尔科夫毯(Markov Blanket)】的更多相关文章

最优特征子集:选出特征的子集,能够比较准确的代表原来的特征.马尔科夫毯(MB)是贝叶斯网络(BN)的最有特征子集. 推测贝叶斯网络的网络结构是NP问题.贝叶斯网络中一个节点T的马尔科夫毯是其父节点,子节点和配偶节点的集合.…
马尔可夫毯(Markov blanket) 马尔科夫毯,是满足如下特性的一个最小特征子集:一个特征在其马尔科夫毯条件下,与特征域中所有其他特征条件独立.设特征T的马尔科夫毯为MB(T),则上述可表示为: P(T | MB(T)) = P(T | Y, MB(T)) 其中Y为特征域中的所有非马尔科夫毯结点.这是马尔科夫毯的最直接的定义.关于某一特征的马尔科夫毯在贝叶斯网络中的表现形式是该特征(即该结点)的父结点.子结点以及子结点的父结点. http://blog.csdn.net/memory51…
(学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对目标分布 \(p\) 进行采样. 预备知识 学习MCMC需要以下预备知识 条件分布: MCMC常常被用于从条件分布中采样. 蒙特卡洛估计(Monte Carlo estimation) 马尔科夫链(Markov chains) 学习目标 知道基本的问题设定: 即你希望从一个难以处理的分布中采样近似样…
在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策过程(Markov Decision Process,以下简称MDP)来简化强化学习的建模. MDP这一篇对应Sutton书的第三章和UCL强化学习课程的第二讲. 1. 强化学习引入MDP的原因 强化学习的8个要素我们在第一节已经讲了.其中的第七个是环境的状态转化模型,它可以表示为一个概率模型,即在…
原文地址: https://www.cnblogs.com/pinard/p/9426283.html --------------------------------------------------------------------------------------- 在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策过程(Markov…
写在前面的话:从今日起,我会边跟着硅谷大牛Siraj的MOVE 37系列课程学习Reinforcement Learning(强化学习算法),边更新这个系列.课程包含视频和文字,课堂笔记会按视频为单位进行整理. 课程表地址:https://github.com/llSourcell/Move_37_Syllabus 带字幕课程视频地址:https://www.bilibili.com/video/av31518766 本课作为导论,大致普及了一下机器学习和强化学习的概念和用途.其次,捎带介绍了一…
前言 你清茶园不是人待的地方! 里面的个个都是人才,说话又好听--就是我太菜了啥也听不懂,这次期中还考的贼**烂,太让人郁闷了. 最近课上讲这个马尔科夫链蒙特卡罗方法,我也学得一塌糊涂.这时我猛然想起了自己的博客园密码(雾),来更个博客吧. [Warning] 本人数学水平差劲,下文用词不严谨.缺少部分证明,请酌情阅读.若出锅,欢迎指正. 啥是马尔科夫链? 马尔科夫链(Markov Chain),简单来说就是一个用来随机游走的有向图,每条边(u, v)的边权\(p_{uv}\)代表"当前在u,下…
马尔可夫毯(Markov Blanket) 最近接触到马尔可夫毯(MarkovBlanket)这个概念,发现网上资料不多,通俗易懂的解释甚少,查了一些资料后,决定写一个总结. 提到马尔可夫毯,就会有一堆从名字上看很相近的概念,比如马尔可夫链(Markov Chain, MC).隐马尔可夫模型(Hidden Markov Model, HMM).马尔可夫随机场(MarkovRandom Field, MRF)等等.其实,马尔可夫毯与这些概念不同,它是一个局部的概念,而不是一个整体模型级别的概念.以…
Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的随机文本".1 2. 隐马尔科夫过程1 3. 隐马模型基本要素及基本三问题2 4. 维特比算法2 5. 应用 HMM一开始是在信息论中应用的,后来才被应用到自然语言处理还有其他图像识别等各个2 6. 扩展数学之美系列十九 -- 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)2…
1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(probabilistic model)提供了一种描述框架,将学习任务归结于计算未知变量的概率分布,而不是直接得到一个确定性的结果. 在概率模型中,利用已知变量推测未知变量的分布称为“推断(inference)”,其核心是如何基于可观测变量推测出未知变量的条件分布. 具体来说,假定所关心的变量集合为…