c语言杨氏矩阵算法】的更多相关文章

杨氏矩阵 有一个二维数组.数组的每行从左到右是递增的,每列从上到下是递增的.在这样的数组中查找一个数字是否存在.时间复杂度小于O(N);数组:1 2 32 3 43 4 5 1 3 42 4 54 5 6 1 2 3 4 5 6 7 8 9 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> ][], int rows, int cols, int data) { ; ; )) { if (arr…
//二维数组中的查找,杨氏矩阵 //在一个二维数组中,每行都依照从左到右的递增的顺序排序.每列都依照从上到下递增的顺序排序. //请完毕一个函数.输入这种一个数组和一个数,推断数组中是否包括这个数. #include <stdio.h> #define Col 4 int Yang(int arr[][Col], int val) { int i=0; int j = Col - 1; int tmp = arr[i][j]; //找到左上角的数 while (1) { if (tmp ==…
// 二维数组中的查找,杨氏矩阵在一个二维数组中.每行都依照从左到右的递增的顺序排序. // 每列都依照从上到下递增的顺序排序.请完毕一个函数,输入这种一个数组和一个数.推断数组中是否包括这个数 #include <stdio.h> #define col 4 #define rol 4 int yang(int(*p)[col], int num) { int i = 0; int j = col - 1; while (j+1) { int *q = &(p[i][j]); if…
参考:http://xudacheng06.blog.163.com/blog/static/4894143320127891610158/ 杨氏矩阵(Young Tableau)是一个很奇妙的数据结构,他类似于堆的结构,又类似于BST的结构,对于查找某些元素,它优于堆:对于插入.删除它比BST更方便. 首先介绍一下这个数据结构的定义,Young Tableau有一个m*n的矩阵,让后有一数组 a[k], 其中k<=m*n ,然后把a[k]中的数填入 m*n 的矩阵中,填充规则为(如图1-1):…
10个经典的C语言面试基础算法及代码作者:码农网 – 小峰 原文地址:http://www.codeceo.com/article/10-c-interview-algorithm.html 算法是一个程序和软件的灵魂,作为一名优秀的程序员,只有对一些基础的算法有着全面的掌握,才会在设计程序和编写代码的过程中显得得心应手.本文是近百个C语言算法系列的第二篇,包括了经典的Fibonacci数列.简易计算器.回文检查.质数检查等算法.也许他们能在你的毕业设计或者面试中派上用场. 1.计算Fibona…
/* 数据结构C语言版 弗洛伊德算法  P191 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h>#include <limits.h> #define MAX_NAME 5   // 顶点字符串的最大长度+1#define MAX_INFO 20   // 相关信息字符串的最大长度+1typedef int VRType;   // 顶点关系的数据类型#define INFINITY INT_MAX // 用整型最大值代替∞#define MA…
何为杨氏矩阵?这个网上的介绍很多,下面给出杨氏矩阵搜索算法: #include <iostream> using namespace std; // 杨氏矩阵查找算法 ], int N, int k) { ][] || k>arr[N - ][N- ]) { cout << "此值必不在此数组内" << endl; return false; } // 从左下角元素查起 ; ; &&col<=N-) { if (k <…
先介绍一下这个数据结构的定义,Young Tableau有一个m*n的矩阵,然后有一数组 a[k], 其中 k<=m*n ,然后把a[k]中的数填入 m*n 的矩阵中,填充规则为: 1.  每一行每一列都严格单调递增(有其他的版本是递减,其原理相同). 2.  如果将a[k]中的数填完后,矩阵中仍有空间,则填入 ∞. 举例: 这里主要给出杨氏矩阵的定义和查找 方法:理由每一列,没一行都是递增的,我们从左上角开始查找,不断的缩小矩阵的大小,最后只剩一1*1的矩阵. C++代码: #pragma o…
Description Mr. Young wishes to take a picture of his class. The students will stand in rows with each row no longer than the row behind it and the left ends of the rows aligned. For instance, 12 students could be arranged in rows (from back to front…
杨氏矩阵是一个二维矩阵,特点是每一行的右边的元素比左边的大,每一列下面的元素比上面的大: 比如 1 2 8 9 2 4 9 12 4 7 10 13 6 8 11 15 假设要查找的变量为target,我刚开始的想法是先定位到target的纵坐标:先找到target可能所在的行,然后再在那行遍历横坐标:这种方法是最暴力的方法,而且所需的时间复杂度是O(m*n)显然不是一个好的做法: 考虑到杨氏矩阵的特性:先给一个比较的基准点:例如 第4行第4列的元素5,如果要查找的target比基准点大,那么是…