[洛谷P4721]【模板】分治 FFT】的更多相关文章

题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以只做到 2*(r-l),能快一倍. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long…
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg_{i-j}+\sum_{j=mid+1}^rf_jg_{i-j}\] 复杂度\(O(n\log^2n)\). 分治思路见:https://www.cnblogs.com/SovietPower/p/9366763.html 多项式求逆做法先坑着. //693ms 4.91MB #include <…
题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ,mod=; *N],b[*N],rev[*N],f[N],g[N],n,G,Gi; void exGCD(int a,int b,int &a…
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:…
P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\dots,f[n-1]\),其中\(f[i]=\sum_{j=1}^if[i-j]g[j]\) 边界为 \(f[0]=1\) .答案模 \(998244353\) . 输入输出格式 输入格式: 第一行一个正整数 \(n\) . 第二行共 \(n−1\) 个非负整数 \(g[1],g[2],\dots,…
题目大意:给定长度为$n-1$的数组$g_{[1,n)}$,求$f_{[0,n)}$,要求: $$f_i=\sum_{j=1}^if_{i-j}g_j\\f_0=1$$ 题解:直接求复杂度是$O(n^2)$,明显不可以通过此题 分治$FFT$,可以用$CDQ$分治,先求出$f_{[l,mid)}$,可以发现这部分对区间的$f_{[mid,r)}$的贡献是$f_{[l,mid)}*g_{[0,r-l)}$,卷出来加到对应位置就行了,复杂度$O(n\log_2^2n)​$ 卡点:无 C++ Code…
传送门 多项式求逆的解法看这里 我们考虑用分治 假设现在已经求出了$[l,mid]$的答案,要计算他们对$[mid+1,r]$的答案的影响 那么对右边部分的点$f_x$的影响就是$f_x+=\sum_{i=l}^{mid}f[i]g[x-i]$ 发现右边那个东西可以用卷积快速计算 那么只要一边分治一边跑FFT统计贡献就行了 说是分治FFT实际上代码里写的是NTT…… 而且分治FFT跑得好慢多项式求逆的速度是它的10倍啊…… //minamoto #include<iostream> #incl…
传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x)=\sum_{i=0}^\infty g_ix^i$,且$g_0=0$ 这俩玩意儿似乎就是$f(x)$和$g(x)$的生成函数 那么就有$$F(x)G(x)=\sum_{i=0}^\infty x^i\sum_{j+k=i}f_jg_k$$ 然后根据题目,有$$f_i=\sum_{j=1}^if_{…
题目大意:给定长度为$n-1$的数组$g_{[1,n)}$,求$f_{[0,n)}$,要求: $$f_i=\sum_{j=1}^if_{i-j}g_j\\f_0=1$$ 题解:分治$FFT$博客,发现这道题就是求$f*g=f-1$($f-1$就是没有常数项的$f$),改写一下式子:$$f*g\equiv f-1\pmod{x^n}\\f-f*g\equiv1\pmod{x^n}\\f*(1-g)\equiv1\pmod{x^n}\\f\equiv(1-g)^{-1}\pmod{x^n}$$ 卡点…
POJ 1741. Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 34141   Accepted: 11420 Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Define dist(u,v)=The min distance between node u and…