增强学习--Q-leraning】的更多相关文章

[TOC] 马里奥AI实现方式探索 --神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典的马里奥形象出现.平时我们都是人来玩马里奥游戏,能否可以让马里奥智能的自己闯关个呢?OK,利用人工智能的相关算法来进行自动化通关一直是一个热门的话题,最近最火的相关东东就是传说中的alphaGo啦.而在游戏的自动化测试当中,这种算法也是非常实用的,可以大量的减少测试人力成本. 首先,对于实现马里奥A…
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的增强学习). 那么如何求解最优策略呢?基本的解法有三种: 动态规划法(dynamic programming methods) 蒙特卡罗方法(Monte Carlo methods) 时间差分法(temporal difference). 动态规划法是其中最基本的算法,也是理解后续算法的基础,因此本…
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基础的方法. 一个简单的例子可以解释蒙特卡罗方法,假设我们需要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如积分)的复杂程度是成正比的.而采用蒙特卡罗方法是怎么计算的呢?首先你把图形放到一个已知面积的方框内,然后假想你有一些豆子,把豆子均匀地朝这个方框内撒,散好后数这个图形之中有多少…
增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行拟合.分类.聚类或者降维等操作.然而对于很多序列决策或者控制问题,很难有这么规则的样本.比如,四足机器人的控制问题,刚开始都不知道应该让其动那条腿,在移动过程中,也不知道怎么让机器人自动找到合适的前进方向. 另外如要设计一个下象棋的AI,每走一步实际上也是一个决策过程,虽然对于简单的棋有A*的启发式…
"价值不是由一次成功决定的,而是在长期的进取中体现" 上文介绍了描述能力更强的多臂赌博机模型,即通过多台机器的方式对环境变量建模,选择动作策略时考虑时序累积奖赏的影响.虽然多臂赌博机模型中引入了价值的概念,但方法在建模过程中本质上是以策略为优化目标,因此又常被归为基于策略的增强学习方法. 此外,增强学习方法还有基于价值以及基于模型两类主要方法.本文介绍第二类,先从描述价值目标的Q函数开始,它也常称之为Q-Learning方法. 最简单的Q函数可用"状态-动作"二维表…
原文链接:http://blog.csdn.net/jinzhuojun/article/details/78508203 前段时间Nature上发表的升级版Alpha Go - AlphaGo Zero再一次成为热点话题.作为其核心技术之一的Deep reinforcement learning(深度增强学习,或深度强化学习)也再一次引发关注.Alpha Zero最有意义的地方之一是它去除了从人类经验(棋谱)中学习的过程,而是完全通过“左右互博”式的学习击败了自己的“前辈”.这也很能体现强化学…
1.游戏简介 符号A为 AI Agent. 符号@为金币,AI Agent需要尽可能的接取. 符号* 为炸弹,AI Agent需要尽可能的躲避. 游戏下方一组数字含义如下: Bomb hit: 代表目前AI Agent所接取的炸弹数. Coin hit:   代表目前AI Agent所接取的金币数. Iteration:代表游戏已经进行的帧数,案例正常游玩视频,250ms一帧.高速状态下帧频未知. Game Play:每帧会随机产生一个炸弹和一个金币,或者只产生一个炸弹或金币.每帧AI agen…
本文为Thomas Simonini增强学习系列文章笔记或读后感,原文可以直接跳转到medium系列文章. 主要概念为: Q-Learning,探讨其概念以及用Numpy实现 我们可以将二维游戏想象成平面格子,每个格子代表一个状态,并且对应了不同的动作,例如下图: Q函数接收状态和动作两个参数并输出Q值,即在一个状态下各种动作各自未来的期望奖励.公式如下: 这里的未来期望奖励,就是当前状态下一直到结束状态(成功或失败)所获取的奖励. Q-learning算法伪代码: 其中,更新Q值为bellma…
1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关. 马尔可夫决策过程(Markov Decision Process, MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关.还是举下 棋的例子,…
选自<Reinforcement Learning: An Introduction>, version 2, 2016, Chapter2 https://webdocs.cs.ualberta.ca/~sutton/book/bookdraft2016sep.pdf 引言中是这样引出Chapter2的: One of the challenges that arise in reinforcement learning, and not in other kinds of learning…