[BZOJ4530]大融合】的更多相关文章

LCT维护子树信息 维护两个子树信息,$vinf_x$表示节点$x$的所有轻儿子子树信息,$inf_x$表示以$x$为根的LCT子树(包含虚边)的信息 对$vinf$: access时,断开$x$的原重儿子之前先把它的$inf$加进$vinf_x$里(因为原重儿子变成了轻儿子),再接上新的重儿子,然后把新的重儿子的$inf$从$vinf_x$里删除(因为它不再是轻儿子了) makeroot只是access+splay+reverse,后两个操作不影响信息 link时两端都makeroot,接上去…
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载…
[BZOJ4530]大融合(Link-Cut Tree) 题面 讨厌权限题!!! Loj链接 题目描述 小强要在 N个孤立的星球上建立起一套通信系统.这套通信系统就是连接 N个点的一个树.这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有五条边.其中,(3,8)这条边的负载是 6,因为有六条简单路径 2−3−8, 2−3−8−7, 3−8, 3−8−7, 4−3−8, 4−3−8−72-3-8, 2-3-8-…
大融合 bzoj-4530 Bjoi-2014 题目大意:n个点,m个操作,支持:两点连边:查询两点负载:负载.边(x,y)的负载就是将(x,y)这条边断掉后能和x联通的点的数量乘以能和y联通的点的数量.数据保证任意时刻,点和边构成的都是森林或者树. 注释:$1\le n,m\le 10^5$. 想法:新学了一发LCT维护子树信息,更一道例题. 话说LCT维护子树信息应该怎么做?其实也非常简单.我们只需要将所有的信息都加到父节点上即可. 具体的,我们除了维护子树和sum之外另维护一个值other…
4530: [Bjoi2014]大融合 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 280  Solved: 167[Submit][Status][Discuss] Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负…
4530: [Bjoi2014]大融合 拿这题作为lct子树查询的练手.本来以为这会是一个大知识点,结果好像只是一个小技巧? 多维护一个虚边连接着的子树大小即可. #include<cstdio> #include<cstring> #include<algorithm> #define MN 210010 using namespace std; int p,ca,f; inline int read(){ p=;ca=getchar();f=; ;ca=getcha…
BZOJ_4530_[Bjoi2014]大融合_LCT Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回…
P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一下就好辣 #include<iostream> #include<cstdio> #include<cstring> using namespace std; inline void Swap(int &a,int &b){a^=b^=a^=b;} void…
P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. 输入输出格式 输入格式: 第一行包含两个整数 \(N, Q\),表示星球的数量和操作的数量.星球从 \(1\) 开始编号. 接下来的 \(Q\) 行,每行是如下两种…
LOJ#2230. 「BJOI2014」大融合 题目描述 小强要在$N$个孤立的星球上建立起一套通信系统.这套通信系统就是连接$N$个点的一个树.这个树的边是一条一条添加上去的. 在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有五条边.其中,$(3,8)$这条边的负载是$6$,因为有六条简单路径$2-3-8,\ 2-3-8-7,\ 3-8,\ 3-8-7,\ 4-3-8,\ 4-3-8-7$路过了$(3,8)$. 现在,你的任务就是随着边…
4530: [Bjoi2014]大融合 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 990  Solved: 604[Submit][Status][Discuss] Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的…
Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条简单路径经过边\((u,v)\). Solution 加边用lct,询问结果相当于\(p\)为根时的\((siz[p]-siz[q])\times siz[q]\). 那么如何用lct维护子树大小呢?维护\(isiz[p]\)表示\(p\)在lct上的虚子树大小,\(siz[p]\)表示\(isiz…
[BJOI2014]大融合(Link Cut Tree) 题面 给出一棵树,动态加边,动态查询通过每条边的简单路径数量. 分析 通过每条边的简单路径数量显然等于边两侧节点x,y子树大小的乘积. 我们知道裸的LCT只能维护链的信息,那么怎么维护子树大小呢?我们只需要对于节点x维护x的所有虚儿子的子树大小之和vir.那么查询的时候先split(x,y),这样x到y就成为了实链,其他与x相连的节点都是虚儿子.那么x一侧的子树大小就是vir[x]+1,y一侧的子树大小就是vir[y]+1 考虑虚子树大小…
NOIP2017 普及组题目大融合 每个读者需要有某个后缀的书,可以暴力map,复杂度\(o(9*nlog(n))\),也可以反串建trie树,复杂度\(o(9*n)\). 故可以求出需要的最少的RMB数目. 显然直接求花费金币的最小值是不容易的,那么可以二分最小值. 问题变为判断性的了. 实际上S就等于一个机器人最多可以得到的RMB数... 先将行列拆开统计. 能转移到一个点的区间实际上是已知而且单调的,故可以利用单调队列来维护. 由于同种颜色的转移能多1RMB,因此每个颜色都要维护. 需要4…
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的询问. 输入 第一行包含两个整数N,Q,表示星球的…
易知所求的是两棵子树大小的乘积.先建出最后所得到的树,求出dfs序和子树大小.之后考虑如何在动态加边过程中维护子树大小.这个可以用树剖比较简单的实现,但还有一种更快更优美的做法就是线段树合并.对每个点开权值线段树,维护当前时刻这棵点为根的子树中,已经和其相连的点的dfs序情况.合并时直接将表示两棵子树的线段树合并,查询在整棵子树中查询某段dfs序区间. 也可以在线地用lct维护子树,并不会. #include<iostream> #include<cstdio> #include&…
对LCT子树大小进行维护. size表示实子树大小,sz表示虚子树大小. 具体操作是体现在link和splay中,可以看代码. 注意每次做完都要update. By:大奕哥 #include<bits/stdc++.h> using namespace std; ; ],rev[N],s[N],n,m,q,size[N],sz[N]; ]!=x&&c[fa[x]][]!=x;} void update(int x) { size[x]=size[c[x][]]+size[c[x…
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. Input 第一行包含…
题面 没有权限号的可以去LOJ Sol 大家都知道,\(LCT\)上有许多实边和虚边 实边就是每棵\(Splay\)上的既认父亲又认儿子的边 虚边就是\(Splay\)和\(Splay\)之间只认父亲的的边 那么每个点就有它的虚儿子和实儿子,实际上虚儿子才是它在\(LCT\)维护的树上的真正的儿子 当你\(Access(x)\)时,\(x\)的虚儿子加上它自己就是它子树的信息 所以我们要维护每个点虚儿子的信息和LCT子树的信息(也就是虚儿子+实儿子+自己) 怎么维护? 你会发现这只会在\(Acc…
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. 输入 第一行包含两个整数N,Q,表示…
传送门 线段树合并菜题. 题意简述:nnn个点,支持连边以及查询一个点所在连通块中经过这个点的路径条数,保证这张图时刻为森林. 思路: 先建出所有操作完之后的树统计出dfsdfsdfs序 注意有可能是森林而不是树 然后用线段树合并维护每棵子树的sizesizesize即可. 为了方便,我们将每个节点的ininin作为下标插入线段树中,这样可以方便的统计出一棵子树在[inv,outv],v∈subtree[in_v,out_v],v\in subtree[inv​,outv​],v∈subtree…
传送门 大佬们似乎都是用树剖+并查集优雅地A了此题 然后我太弱了,只能打打LCT的板子 虽然的确可以挺无脑的A掉…… 不过至少这题教了我该怎么维护LCT上虚子树的信息,具体看这里 首先,答案很明显是断开边后两个子树的大小之积 所以只要把这条边split出来,答案就是$(size[y]-size[x])*size[x]$(很好理解) 或者$x的虚子树大小*y的虚子树大小$(我用的是这种方法,为什么的话,代码里有注解) //minamoto #include<cstdio> #include<…
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. Input 第一行包含…
LCT维护子树并没有想象中的那么难,在这里只是复习下. (其他的维护子树的题目,可见:“共价大爷游长沙”) 只要记录下虚边连接的信息就好了. #include<bits/stdc++.h> #define N 100010 typedef long long ll; using namespace std; int n,q,ans,tot,num; struct Link_Cut_Tree{ ],fa[N],size1[N],size2[N],q[N],top,rev[N]; inline v…
题意 有 $n$ 个点,初始没有连边,要求支持两个动态操作: 1. 加一条边(保证之前两点不连通) 2. 查询过一条边的简单路径数量(就是两边连通块的大小的乘积) $n,Q\le 100000$ 题解 由第一个操作保证之前两点不连通的性质可知,$n$ 个点最多被连成一棵 $n-1$ 条边的生成树. 离线做法:树剖+树状数组/线段树 我们可以离线确定出最终森林的形态(我们给森林中的每棵树随便定义个根). 然后重新模拟操作时,只需要在最终的森林上做一些链操作(统计答案用). 由于只有加边操作,所以模…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4530/ 题解 想要求出一条边的负载那么就是要求出一个点为根的时候的另一个点的子树大小. 又因为要动态加边,所以只能用 LCT. (突然想起来因为没有强制在线是不是可以把树先建起来然后跑以时间为权值的主席树? 但是 LCT 只能维护链上的信息,怎么维护子树大小呢? 所以就来搞一个维护子树信息的 LCT. LCT 上每个点开一个变量 \(sum\) 表示这个点的所有轻儿子的子树大小之和,\(si…
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘积. 掌握了LCT如何维护虚子树信息和后,做法就很清晰了.split(x,y)后,输出x的虚子树和+1与y的虚子树和+1的乘积:或者,(以y为根)输出x的子树总和与y的子树总和减去x的子树总和的乘积. 代码如下(这次我试着写了一个单旋"Spaly",好像常数还小不少......) #inc…
题面戳我 sol LCT维护子树size. 开一个数组\(sz_i\)表示一个节点的所有虚儿子的size和,\(sum_i\)表示以一个节点为根的子树的\(size\)和,可见\(sz_u=\sum_{v\mbox{是}u\mbox{的虚儿子}}sum_v\). 那么我们就需要动态维护这两个东西,首先考虑\(sz_i\),这个只有在儿子的虚实关系被修改的时候才会变化,所以只有\(access\)和\(link\)的时候会改变.在\(access\)中一定会是一个儿子由虚变实,一个儿子由实变虚.因…
LCT新姿势:维护子树信息. 不能带修,子树修改就要toptree了... 题意:动态加边,求子树大小. 解: 维护子树信息只要额外维护虚边连的儿子的信息即可.这里把siz的定义变成子树大小. 哪里会修改虚边呢?link和access.把这两个函数改一改就行了. 注意这里link的时候x和y都要make_root,因为修改只能修改根. #include <cstdio> #include <algorithm> typedef long long LL; ; ], sum[N],…
传送门 题意:写一个数据结构,支持图上连边(保证图是森林)和询问一条边两端的连通块大小的乘积.$\text{点数.询问数} \leq 10^5$ 图上连边,$LCT$跑不掉 支持子树$size$有点麻烦.我们需要虚子树的$size$和(实子树的可以直接$pushup$),那么我们对于每一个点就去维护其虚子树的$size$和,那么每一个点的子树和就是可以维护的了.可以知道只有$link$和$access$操作会修改虚子树和(其他都在实链上进行操作),稍微加一点东西就行了.相对来说还是比较裸. 注意…