机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 矩 对于随机变量X,X的K阶原点矩为 \[E(X^{k})\] X的K阶中心矩为 \[E([X-E(X)]^{k})\] 期望实际上是随机变量X的1阶原点矩,方差实际上是随机变量X的2阶中心矩 变异系数(Coefficient of Variation):标准差与均值(期望)的比值称为变异系数,记为C.V 偏度Skewness(三阶) 峰度Ku…
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些…
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測,如前面讲过的KNN.决策树.朴素贝叶斯.adaboost.SVM.Logistic回归都是分类算法.回归算法用于连续型分布预測.针对的是数值型的样本,使用回归.能够在给定输入的时候预測出一个数值.这是对分类方法的提升,由于这样能够预測连续型数据而不不过离散的类别标签. 回归的目的就是建立一个回归方程…
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Taylor展开及其应用 常见概率分布和推导 指数族分布 共轭分布 统计量 矩估计和最大似然估计 区间估计 Jacobi矩阵 矩阵乘法 矩阵分解RQ和SVD 对称矩阵 凸优化 微积分与梯度 常数e的计算过程 常见函数的导数 分部积分法及其应用 梯度 上升/下降最快方向 凸函数 Jensen不等式 自然常数…
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 Taylor 展式与拟牛顿 索引 taylor展式 计算函数值 解释gini系数公式 平方根公式 牛顿法 梯度下降算法 拟牛顿法 DFP BFGS Taylor公式 如果函数在x0点可以计算n阶导数,则有Taylor展开 如果取x0=0,则有Taylor的麦克劳林公式. Taylor公式的应用1:函数值计算 计算\(e^{x}\) 则我们现在的…
我们一般会拿偏度和峰度来看数据的分布形态,而且一般会跟正态分布做比较,我们把正态分布的偏度和峰度都看做零.如果我们在实操中,算到偏度峰度不为0,即表明变量存在左偏右偏,或者是高顶平顶这么一说. 一.偏度(Skewness) Definition:是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性,简单来说就是数据的不对称程度.. 偏度是三阶中心距计算出来的. (1)Skewness = 0 ,分布形态与正态分布偏度相同. (2)Skewness > 0 ,正偏差数值较大,为正偏或右偏.…
前两天写了篇文章,给想进程序员这个行当的同学们一点建议,没想到反响这么好,关注和阅读数都上了新高度,有点人生巅峰的感觉呀.今天趁热打铁,聊聊我最喜欢的编程语言——Python. 为什么要说Python 先说说编程语言,这里有一些梗,程序员之间因为使用不同的编程语言一直都存在着很多鄙视链,比如写汇编的鄙视写 C 的,写 C 的鄙视写 C++的,写C++的鄙视 写 C#,写Java 的鄙视前面所有和C相关的程序员,天天写脚本的程序员又一起鄙视 Java 程序员,写静态语言的和写动态语言的相互鄙视,写…
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归.假设K=1.那么新数据被简单分配给其近邻的类.KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义.对于监督学习.数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产…
Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API 关键词:Local vector,Labeled point,Local matrix,Distributed matrix,RowMatrix,IndexedRowMatrix,CoordinateMatrix,BlockMatrix. 前言:MLlib支持本地向量和存储在单机上的矩阵,当然也支持被存储为RDD的分布式矩阵.一个有监督的机器学习的例子在MLlib里面叫做标签点. 1. 本地向量 一…
机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型:他代表的是对象属性与对象值之间的一种映射关系.树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值.决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出. 数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测. 一.决策树与ID3概述1.决策树 决策树,其结构和树非常相似,因此得其名决策树.决…