/** 题目:hdu1695 GCD 链接:http://acm.hdu.edu.cn/status.php 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b , c ≤ y ≤ d ,且 gcd(x,y) = k ,(5,7),(7,5)看做同一对, gcd(x,y) 函数为 x 和 y 的最大公约数. 本题默认:a = c = 1; 0 < a <= b <= 100,000, 0 < c <= d <= 100,000,…
我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做?TLE 考虑优化,由于看到了pd是成对出现的,令T=pd $ans=\sum_{T<=min(n,m)}\lfloor n / T \rfloor *\lfloor m / T \rfloor \sum_{p \mid T}\mu(T/p)$ 或者 $ans=\sum_{T<=min(n,m)}…