Highway Networks Pytorch】的更多相关文章

导读 本文讨论了深层神经网络训练困难的原因以及如何使用Highway Networks去解决深层神经网络训练的困难,并且在pytorch上实现了Highway Networks. 一 .Highway Networks 与 Deep Networks 的关系 深层神经网络相比于浅层神经网络具有更好的效果,在很多方面都已经取得了很好的效果,特别是在图像处理方面已经取得了很大的突破,然而,伴随着深度的增加,深层神经网络存在的问题也就越大,像大家所熟知的梯度消失问题,这也就造成了训练深层神经网络困难的…
(一)简述---承接上文---基于pytorch实现HighWay Networks之Train Deep Networks 上文已经介绍过Highway Netwotrks提出的目的就是解决深层神经网络训练困难的问题,以及简单的解释了为什么深层神经网络会出现梯度消失和梯度爆炸的问题,这里详细的介绍一些Highway Networks以及使用pytorch实现Highway Networks. (二)Highway Networks 什么是Highway Networks? Highway Ne…
(一)Highway Networks 与 Deep Networks 的关系 理论实践表明神经网络的深度是至关重要的,深层神经网络在很多方面都已经取得了很好的效果,例如,在1000-class ImageNet数据集上的图像分类任务通过利用深层神经网络把准确率从84%提高到了95%,然而,在训练深层神经网络的时候却是非常困难的,神经网络的层数越多,存在的问题也就越多(例如大家熟知的梯度消失.梯度爆炸问题,下文会详细讲解).训练起来也就是愈加困难,这是一个公认的难题. 2015年由Rupesh…
一 .Highway Networks 与 Deep Networks 的关系 深层神经网络相比于浅层神经网络具有更好的效果,在很多方面都已经取得了很好的效果,特别是在图像处理方面已经取得了很大的突破,然而,伴随着深度的增加,深层神经网络存在的问题也就越大,像大家所熟知的梯度消失问题,这也就造成了训练深层神经网络困难的难题.2015年由Rupesh Kumar Srivastava等人受到LSTM门机制的启发提出的网络结构(Highway Networks)很好的解决了训练深层神经网络的难题,H…
Rupesh Kumar Srivastava (邮箱:RUPESH@IDSIA.CH)Klaus Greff (邮箱:KLAUS@IDSIA.CH)J¨ urgen Schmidhuber (邮箱:JUERGEN@IDSIA.CH)The Swiss AI Lab IDSIA(瑞士AI实验室IDSIA)Istituto Dalle Molle di Studi sull’Intelligenza Artificiale(IDSIA:institute of studies on intellig…
目录 1. 网络结构 2. 分析 解决的问题:在当时,人们认为 提高深度 是 提高精度 的法宝.但是网络训练也变得很困难.本文旨在解决深度网络训练难的问题,本质是解决梯度问题. 提出的网络:本文提出的网络结构统称为highway networks,允许在多层之间的无障碍信息流动[不仅是梯度,也是特征图的流动]. 特别之处:借鉴了LSTM的思想,使用可学习的门机制,调控信息流,即提供information highways. 1. 网络结构 高速网络的每一层都有一个门\(\mathbf{T}\),…
目标: 怎么训练很深的神经网络 然而过深的神经网络会造成各种问题,梯度消失之类的,导致很难训练 作者利用了类似LSTM的方法,通过增加gate来控制transform前和transform后的数据的比例,称为Highway network 至于为什么会有效...大概和LSTM会有效的原因一样吧. 方法: 首先是普通的神经网络,每一层H从输入x映射到输出y,H通常包含一个仿射变换和一个非线性变换,如下 在这个基础上,highway network添加了两个gate 1)T:trasform gat…
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Awesome-pytorch-list Pytorch & related libraries pytorch : Tensors and Dynamic neural networks in Python with strong GPU acceleration. pytorch extras :…
论文笔记:Densely Connected Convolutional Networks(DenseNet模型详解) 2017年09月28日 11:58:49 阅读数:1814 [ 转载自http://www.yyliu.cn/post/7cabb4ff.html ] CVPR 2017上,清华大学的Zhuang Liu.康奈尔大学的Gao Huang和Kilian Q.Weinberger,以及Facebook研究员Laurens van der Maaten 所作论文Densely Con…
本文介绍一下2015 ImageNet中分类任务的冠军——MSRA何凯明团队的Residual Networks.实际上,MSRA是今年Imagenet的大赢家,不单在分类任务,MSRA还用residual networks赢了 ImageNet的detection, localization, 以及COCO数据集上的detection和segmentation, 那本文就简单分析下Residual Networks. 目录 ———————————— 1. Motivation 2. 网络结构 …