对于开源的东东,尤其是刚出来不久,我认为最好的学习方式就是能够看源代码和doc,測试它的样例 为了方便查看源代码,关联导入源代码的项目 先前的项目导入源代码是关联了源代码文件 block数据块,在配置文件hdfs-default.xml中能够查看到,记住要改动不是在这里 block文件存储块是最主要的单位 查看block存放位置,配置文件里查看 假设文件大于64M会占两个块,meta文件是校验文件,第二个文件大于64M,删除文件后,则相应block不在 datanode存放文件,一个文件能够存放…
对于开源的东西.特别是刚出来不久.我认为最好的学习方法是能够看到源代码,doc,样品测试 为了方便查看源代码,导入与项目相关的源代码 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbmVlZGthbmU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=""> 先前的项目导入源代码是关联了源代码文件 block数据块,在配…
hadoop 之hdfs数据块修复方法: .手动修复 hdfs fsck / #检查集群的健康状态 hdfs debug recoverLease -path 文件位置 -retries 重试次数 #修复指定的hdfs数据块.也就是关闭打开的文件. 检查坏块: hadoop fsck /user -files -blocks -locations 检查是否有数据块正在写入: hadoop fsck /user openforwrite…
MapReduce是一种用于大规模数据集的并行计算编程模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.其主要思想Map(映射)和Reduce(规约)都是从函数是编程语言中借鉴而来的,它可以使程序员在不懂分布式底层的情况下轻松的将自己的程序运行在分布式系统上,极大地降低了分布式计算的门槛. 一.执行流程 1.执行步骤(“天龙八部”)  1) map任务处理  ① 读取数据文件内容,对每一行内容解析成<k1,v1>键值对,每个键值对调用一次map函数:  ② 编写Map映射函数…
一.MapReduce介绍 (最好以下面的两个示例来理解原理) 1. MapReduce的基本思想 Map-reduce的思想就是“分而治之” Map Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”执行 “ 简单的任务”有几个含义: 1 数据或计算规模相对于原任务要大大缩小: 2 就近计算,即会被分配到存放了所需数据的节点进行计算: 3 这些小任务可以并行计算,彼此间几乎没有依赖关系 一个HDFS block (input split)执行一个Map task. Map tas…
现在是讨论这个问题的不错的时机,因为最近媒体上到处充斥着新的革命所谓“云计算”的信息.这种模式需要利用大量的(低端)处理器并行工作来解决计算问题.实际上,这建议利用大量的低端处理器来构建数据中心,而不是利用数目少的多的高端服务器来构建. 举例来说,IBM和Google已经宣布计划用1000台处理器构建的集群提供给部分大学,传授学生们如何使用MapReduce工具在这些集群上编程.加利福尼亚大学伯克利分校甚至打算开设使用MapReduce框架编程的课程.我们对MapReduce支持者大肆炒作它如何…
期望 通过这个mapreduce程序了解mapreduce程序执行的流程,着重从程序解执行的打印信息中提炼出有用信息. 执行前 程序代码 程序代码基本上是<hadoop权威指南>上原封不动搬下来的,目的为求出某一年份中最高气温,相关代码如下: public class NcdcWeather { private String USAF_station_id; private String WBAN_station_id; private String date; private String…
1.概述 hadoop集群中文件的存储都是以块的形式存储在hdfs中. 2.默认值 从2.7.3版本开始block size的默认大小为128M,之前版本的默认值是64M. 3.如何修改block块的大小? 可以通过修改hdfs-site.xml文件中的dfs.blocksize对应的值. 注意:在修改HDFS的数据块大小时,首先停掉集群hadoop的运行进程,修改完毕后重新启动. 4.block块大小设置规则 在实际应用中,hdfs block块的大小设置为多少合适呢?为什么有的是64M,有的…
一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来说,自己完完全全实现一个并行计算程序难度太大,而MapReduce就是一种简化并行计算的编程模型,它使得那些没有多有多少并行计算经验的开发人员也可以开发并行应用程序.这也就是MapReduce的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛. 1.1 MapReduce是什么 Hadoop…
1. 查找历年最高的温度. MapReduce任务过程被分为两个处理阶段:map阶段和reduce阶段.每个阶段都以键/值对作为输入和输出,并由程序员选择它们的类型.程序员还需具体定义两个函数:map函数和reduce函数. 对应的Java MapReduce代码如下: public class MaxTemperature{ static class MaxTemperatureMapper extends Mapper<LongWritable,Text,Text,IntWritable>…