给一个有向图G,求一个子图要求当中随意两点至少有一边可达. 问这个子图中最多含多少个顶点. 首先找SCC缩点建图.每一个点的权值就是该点包括点的个数. 要求当中随意两点可达,实际上全部边仅仅能同方向,不然一定有两点不可达, 这样题目又转换成求DAG图最长路的问题了. 然后从入度为0的点開始记忆化搜索.dp[i]表示以i为根最多包括多少点. #include <iostream> #include <cstring> #include <string> #include…
UVA - 11324 The Largest Clique 题意:求一个节点数最大的节点集,使任意两个节点至少从一个可以到另一个 同一个SCC要选一定全选 求SCC 缩点建一个新图得到一个DAG,直接DP行了 这个新图不需要判重边,重边就是真实存在 // // main.cpp // 最大团 // // Created by Candy on 02/11/2016. // Copyright © 2016 Candy. All rights reserved. // #include <ios…
题目链接:https://vjudge.net/problem/UVA-11324 题解: 题意:给出一张有向图,求一个结点数最大的结点集,使得任意两个结点u.v,要么u能到达v, 要么v能到达u(u和v也可以互相到达). 1.可知在一个强连通分量中,任意两个点都可以互相到达.那么我们就对每个强连通分量进行缩点,并记录每个分量的结点个数. 2.缩点之后,就是一张有向无环图了,这时就转化为求:从有向无环图中找出一条权值之和最大的路径.简单的记忆化搜索即可实现. 前向星建图 + 前向星重建: #in…
<题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). 解题分析: 该点集需满足两个要求:1.任意两点至少有一方能够到达另外一点;2.点数尽可能的多. 通过画图分析可以知道,对于那些强连通分量来说,要不就全部加入该点集,要不就全部不能加入,所以直接对原图进行缩点,进行重新构图.然后,根据重新构造的DAG图我们可以知道,要使该点集中任意两点至少有一方能够到达另外一点…
原文地址 Problem Portal Portal1:UVa Portal2:Luogu Portal3:Vjudge Description Given a directed graph \(\text{G}\), consider the following transformation. First, create a new graph \(\text{T(G)}\) to have the same vertex set as \(\text{G}\). Create a direc…
题目大意:在一张无向图中,最大的节点集使得集合内任意两个节点都能到达对方. 题目分析:找出所有的强连通分量,将每一个分量视作大节点,则原图变成了一张DAG.将每个分量中的节点个数作为节点权值,题目便转化为了在DAG中找一条有最大权值和的路径,可以DP解决. 代码如下: # include<iostream> # include<cstdio> # include<vector> # include<stack> # include<cstring>…
题意:给一张有向图G,求一个结点数最大的结点集,使得该结点中任意两个结点 u 和 v满足:要么 u 可以到达 v, 要么 v 可以到达 u(u 和 v 相互可达也可以). 分析:”同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它的结点数,则题目转化为求SCC图上权最大的路径.由于SCC图是一个 DAG, 可以用动态规划求解.“ #include<cstdio> #include<cstring> #include<algo…
题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarjan算法求有向图的强连通分量set记录了强连通分量 Col记录了强连通分量的个数. */ #include <iostream> #include<cstring> #include<cstdio> #include<string> #include<alg…
题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出强连通分量并缩点,每一个新点有一个权值即这个强连通分量中点的个数,在DAG上DP就可以. #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<iostr…
题意:给定一个有向图,求一个最大的结点集,使得任意两个结点,要么 u 能到 v,要么 v 到u. 析:首先,如果是同一个连通分量,那么要么全选,要么全不选,然后我们就可以先把强连通分量先求出来,然后缩成一个点,然后该图就成了一个DAG,然后就可以直接用DP来做了. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #i…