uestc 1720无平方因子数】的更多相关文章

求素数 然后容斥原理// n之内有平方因子的数的个数sum =n/(2^2) + n/(3^2)+……+n/(k^2) - n/(2^2 * 3^2)-……+……. // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <algorithm> #include <queue> #include <stack> #inc…
UESTC 618 题意:求1到n中无平方因子数的个数 Sample Input 3  1  10  30 Sample Output 1  7  19 思路:与前面的BZOJ 2440相似 #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <queue> #include <vector> #include <…
2056. 无平方因子数 ★☆   输入文件:non.in   输出文件:non.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 给出正整数n,m,区间[n,m]内的无平方因子数有多少个? 整数p无平方因子,当且仅当不存在k>1,使p是k^2的倍数,1<=n<=m<=10^12,m-n<=10^7 [输入格式] 两个整数n,m [输出格式] [n,m]间的无平方因子数的个数 [样例输入] 1 5 [样例输出] 4 [提示] 在此键入. [来源]…
Tiny Wong the chef used to be a mathematics teacher in a senior high school. At that time, he always used to tell his students that when there is a square root of some number in one’s final result, it should be simplified by factoring out the largest…
题目大意:就是找一个数拆成两个无平方因子的组合数,然后求个前缀和  ; 分析:运用筛法的思想 ,  因为有序对是由两个合法的数字组成的,所以只要保证第一个数合法,第二个数也合法就行,找出合法的第二个数字的个数就可以用sum前缀和来算,所以L就是第一个数,R=n/L就是最大的第二个数,这里又规定了第二个数从L+1开始,所以sum[R]-sum[L]就是L+1~R合法数字的个数 sum[i] 表示的是小于等于i 的合法因子数 , sum[R]-sum[L] , 就是表示因子大于L,小于等于R,的个数…
J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any square number except 11. For example, 6 = 2 \cdot 36=2⋅3 is square-free, but 12 = 2^2 \cdot 312=22⋅3 is not, because 2^222 is a square number. Some integer…
题目大意:求第k个无平方因子数是多少(无视原题干.1也是全然平方数那岂不是一个数也送不出去了? 无平方因子数(square-free number),即质因数分解之后全部质因数的次数都为1的数 首先二分答案 问题转化为求x以内有多少个无平方因子数 依据容斥原理可知 对于√x以内的全部质数 x以内的无平方因子数=无需是不论什么质数的倍数的数的数量(即x)-是至少一个质数平方倍数的数的数量+是至少两个质数平方倍数的数的数量-是至少三个质数平方倍数的数的数量... 我们回去考虑莫比乌斯函数,我们发现每…
题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0​(n) be the number of positive divisors of nnn. For example, σ0(1)=1\sigma_0(1) = 1σ0​(1)=1, σ0(2)=2\sigma_0(2) = 2σ0​(2)=2 and σ0(6)=4\sigma_0(6) = 4σ0​(6)=4. Let S2(n)=∑i=1nσ0(i2).S_2(n…
分析:y是一个无平方因子数的平方,所以可以从sqrt(x)向上向下枚举找到第一个无平方因子比较大小 大家可能觉得这样找过去暴力,但实际上无平方因子的分布式非常密集的,相关题目,可以参考 CDOJ:无平方因子数 http://acm.uestc.edu.cn/#/problem/show/618 这个题和CDOJ的题虽然不一样,但是可以从CDOJ发现这种数是很多的 官方题解:官方题解说这个无平方因子的枚举量在logn级别,可见非常小 #include <cstdio> #include <…
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Status][Discuss] Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日,小 W 想送一个数给他作为生日礼物.当然他不能送一个小X讨厌…