多任务学习模型之ESMM介绍与实现】的更多相关文章

1. 前言 多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法.在机器学习领域,标准的算法理论是一次学习一个任务,也就是系统的输出为实数的情况.复杂的学习问题先被分解成理论上独立的子问题,然后分别对每个子问题进行学习,最后通过对子问题学习结果的组合建立复杂问题的数学模型.多任务学习是一种联合学习,多个任务并行学习,结果相互影响. 拿大家经常使用的school data做个简单的对比,school data是用来预测…
译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务.然后,我们通过精细调参,来改进模型直至性能不再提升.尽管这样做可以针对一个任务得到一个可接受得性能,但是我们可能忽略了一些信息,这些信息有助于在我们关心的指标上做得更好.具体来说,这些信息就是相关任务的监督数据.通过在相关任务间共享表示信息,我们的模型在…
使用深度学习的超分辨率介绍 关于使用深度学习进行超分辨率的各种组件,损失函数和度量的详细讨论. 介绍 超分辨率是从给定的低分辨率(LR)图像恢复高分辨率(HR)图像的过程.由于较小的空间分辨率(即尺寸)或由于退化的结果(例如模糊),图像可能具有"较低分辨率".我们可以通过以下等式将HR和LR图像联系起来:LR = degradation(HR) 显然,在应用降级函数时,我们从HR图像获得LR图像.但是,我们可以反过来吗?在理想的情况下,是的!如果我们知道确切的降级函数,通过将其逆应用于…
本文将介绍阿里发表在 SIGIR'18 的论文ESMM<Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate>.文章提出使用多任务学习解决CVR(转化率)预估时的样本选择偏差和数据稀疏问题. 背景 在推荐系统.在线广告等应用中,CVR预估比CTR预估更加重要,CTR预估聚焦于点击率预估,即预测用户会不会点击,但是用户点击后进行消费才是最终目标.传统的CVR预估任…
导读: 本文主要介绍了快手的精排模型实践,包括快手的推荐系统,以及结合快手业务展开的各种模型实战和探索,全文围绕以下几大方面展开: 快手推荐系统 CTR模型--PPNet 多domain多任务学习框架 短期行为序列建模 长期行为序列建模 千亿特征,万亿参数模型 总结和展望 -- 01 快手推荐系统 快手的推荐系统类似于一个信息检索范式,只不过没有用户显示query.结构为数据漏斗,候选集有百亿量级的短视频,在召回层,会召回万级的视频给粗排打分,再选取数百个短视频,给精排模型打分,最后会有数十个短…
今天主要和大家聊聊多任务学习在转化率预估上的应用. 多任务学习(Multi-task learning,MTL)是机器学习中的一个重要领域,其目标是利用多个学习任务中所包含的有用信息来帮助每个任务学习得到更为准确的学习器,通过使用包含在相关任务的监督信号中的领域知识来改善泛化性能.深度学习流行之后,MTL在深度网络也有很多尝试和方法. (0).背景介绍 名词定义: CTR: 指曝光广告中,被点击的广告比例 CVR: 指被点击的广告中,最终形成转化的广告比例 CTCVR: 指曝光广告中,被点击且最…
本文将介绍Google发表在RecSys'19 的论文<Recommending What Video to Watch Next: A Multitask Ranking System>.主要解决大规模视频推荐中的排序阶段的多任务学习和用户选偏置问题. 背景 给定当前用户正在观看的视频,推荐给用户下一个可能观看或者喜欢的视频.在实际推荐场景中的两个主要问题: 1)多目标:我们不仅希望推荐的视频用户会点击,而且希望用户会给好评并分享给朋友观看 2)选择偏置:用户点击视频可能因为该视频在页面的顶…
1.难点-如何实现高效的通信 我们考虑下列的多任务优化问题: \[ \underset{\textbf{W}}{\min} \sum_{t=1}^{T} [\frac{1}{m_t}\sum_{i=1}^{m_t}L(y_{ti}, \langle \bm{w}_t, \bm{x}_{ti} \rangle)]+\lambda \text{pen}(\textbf{W}) \tag{1} \] 这里\(\text{pen}(\mathbf{W})\)是一个用于增强group sparse的正则项…
统计角度窥视模型概念 作者:白宁超 2016年7月18日17:18:43 摘要:写本文的初衷源于基于HMM模型序列标注的一个实验,实验完成之后,迫切想知道采用的序列标注模型的好坏,有哪些指标可以度量.于是,就产生了对这一专题进度学习总结,这样也便于其他人参考,节约大家的时间.本文依旧旨在简明扼要梳理出模型评估核心指标,重点达到实用.本文布局如下:第一章采用统计学习角度介绍什么是学习模型以及如何选择,因为现今的自然语言处理方面大都采用概率统计完成的,事实证明这也比规则的方法好.第二章采用基于数据挖…
6. 学习模型的评估与选择 Content 6. 学习模型的评估与选择 6.1 如何调试学习算法 6.2 评估假设函数(Evaluating a hypothesis) 6.3 模型选择与训练/验证/测试集(Model selection and training/validation/test sets) 6.4 偏差与方差 6.4.1 Diagnosing bias vs. variance. 6.4.2 正则化与偏差/方差(Regularization and bias/variance)…